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PROJECT ABSTRACT

The Project Abstract shall include a statement of objectives, methods to be employed, and the significance of the
proposed activity to the advancement of knowledge or education. Avoid use of the first person to complete this
summary. DO NOT EXCEED ONE PAGE. The abstract should be suitable for release under the Freedom of

Information Act, 5 U.S.C. 552, as amended.

We have fabricated 2-3 nm radius aluminum nanoparticles as evidenced by distinct Coulomb Blockade steps in
the linear conductance. We have fit these Coulomb Blockade steps to a theoretical model based on the Orthodox
Theory of single electron tunneling in order to determine the size and junction characteristics of these
nanoparticles. Using the same fabrication technique. we have produced 2-3 nm radius 0.01% iron in copper
nanoparticles. By investigating these dilute magnetic alloy nanoparticles, we intended to verify the results of
Thimm et al. concerning the complex interplay between spin-polarized tunneling and finite-size effects in a
"Kondo box."



PROJECT DESCRIPTION

Although the electron-transport properties of metals have been well known and
studied for nearly a century, it is only recently that technological advances in
nanostructures have allowed researchers to investigate the breakdown of the bulk
properties of metals at the mesoscopic length scale (< 100 nm). In fact, advances in both
atomic-scale imaging and nanofabrication now permit experimentalists to fabricate and,
in turn, investigate systems in which discrete electronic states may be distinguished and
single electrons counted. One such system of recent interest is that of ultrasmall metallic
grains (size ~10 nm in diameter). This particular system has discrete, observable energy
levels at low temperatures which lend to dramatic consequences for the superconducting,
magnetic, and optical properties of the metallic grains [1]. These effects are exemplified
in the work of Ralph ez. al. [1,3 - 5] in which the superconducting properties of ultrasmall
grains of aluminum (Al) were examined and were shown to display even-odd effects due
to superconducting pairing interactions. Here we extend the technology developed by
Ralph et al. by doping copper nanoparticles with iron atoms in order to investigate the
Kondo effect. By scaling down the sample size to the nanometer regime, several
unprobed questions may be answered, such as how the Kondo effect is affected by
discrete energy levels and what role interimpurity interactions play in conduction through
doped metallic grains. The work described below was performed by Heather J. Lynch, a
Princeton physics undergraduate (Class of 2000), and has won the American Physical
Society LeRoy Apker Award 2001 for the best undergraduate thesis in the nation. A copy

of Lynch s thesis is enclosed.




Recently, Thimm er. al. [2] have theoretically investigated the Kondo effect in a
doped ultrasmall metallic grain. As is well known, the Kondo effect arises in dilute
magnetic alloys and involves the interaction between the magnetic moment of the
impurity and the conduction band electrons of the host metal [6, 7]. Although the Kondo
effect in bulk samples has been studied experimentally for over sixty years, Thimm et. al.
answer the question: What happens to the Kondo effect if the impurity resides in an
ultrasmall metallic grain? In the case of this Kondo box system, the unpaired spin of
the magnetic impurity couples to conduction band electrons with a discrete density of
states. Thimm et. al. have predicted that for grains with mean level spacing A > kpTk,
where Tk is the characteristic Kondo temperature for the alloy, the temperature
dependence of the differential conductance will be measurably affected in a way that will
show evidence of the interplay between the Kondo effect and the finite size effects in the
grain [2].

Our experiment is most easily described by the circuit diagram in Figure 1. Using
fabrication steps discussed below we fabricate a metallic nanoparticle with a radius r (2-5
nm) and self-capacitance C.ir. On each side of the nanoparticle is an oxide tunnel
junction with capacitance C and resistance R. On the other side of these oxide tunnel
junctions are two thick metallic layers which serve as electrical leads to the nanoparticle.

The Kondo system we have chosen to investigate is a 0.01% iron in copper alloy.
This iron-copper system is ideal because the Kondo temperature is ~10 K. A spherical
nanoparticle with mean level spacing A = 10ks has a 3 nm radius, which is
approximately the size nanoparticle we expect to fabricate using the steps outlined below.

Using a 0.01% alloy, we expect to get 1-10 magnetic atoms in each nanoparticle. Unlike




most other nanoparticle systems of this kind, we have a mixed metal system in which we
have aluminum leads and a copper-iron nanoparticle. We use the aluminum leads in
order to have aluminum oxide tunnel junctions which have been well characterized in
similar nanoparticle systems [1].

The fabrication of the samples follows closely the technique employed by Ralph
et. al. [1,2-5] to do single-electron tunneling spectroscopy on metallic nanoparticles. The
steps involved in the fabrication are illustrated in Figures 2 and 3. The first stage of the
process is to create a low-stress, free standing membrane which serves as the substrate for
the nanoparticle fabrication (see Figure 2). As a first step, a 50 nm thick layer of LPCVD
low-stress SisNg is deposited on both sides of a standard 3 diameter, 15 mil thick,
Si[111] wafer. A 5 mm x 5 mm square window is defined on the SisN, wafer using
photolithography. The native silicon oxide layer and the Si3Ns layers on the silicon wafer
is removed using a CHF; reactive ion etch (RIE) so as to expose the silicon wafer within
the photolithographically-defined square. The wafer is then etched in a 30% KOH
solution at 80-85° C for approximately 2.5 hours. The anisotropic chemical etch leaves
500 pm x 500 pm free-standing silicon nitride membrane windows. We next prepare a
bilayer of electron-beam resist (PMMA/MMA 10% by weight and 1.5% 950K PMMA).
Using electron-beam lithography, a hole ~40 nm in diameter is created in the bilayer of
resist. Using another CHF; RIE etch, this 40 nm diameter hole is transformed into a
bowl-shaped formation which just breaks through the bottom of the membrane, leaving
an opening in the membrane which is ~ 4 nm in diameter. The device is fabricated in this
bowl-shaped structure using a series of metal evaporations (see Figure 3). Onto the

bowl side of the wafer we evaporate 1000 of aluminum; which fills the bowl and




provides some stability to the sample. The sample is then oxidized in 50 mT of pure O
for 2 minutes. This creates a thin oxide layer at the opening of the bowl. On the other
side of the sample, we evaporate ~20 of a 0.01% iron in copper alloy. This layer forms
islands on the surface of the membrane. The device is successful if one of the islands
forms under the opening in the membrane. In the next step we deposit a very thin 15
layer of aluminum onto the islands and oxidize in 50 mT of pure O for 2 minutes as
before. Ideally, the oxidation is timed precisely so that all the aluminum, and none of the
copper nanoparticle, has been oxidized. We have, in effect, deposited a 15 A layer of
insulting A1,O3. Finally, we evaporate another 1000 of aluminum to form the second
lead of the nanoparticle.

The two 1000 aluminum layers serve as macroscopic contact pads for
measurement of the samples. The 5 mm X S mm X 0.4 mm device is sandwiched
between two copper plates that are affixed to two teflon triangles screwed together.
Using two wires attached to each copper plate we make a standard four-point
measurement across our sample. To sweep over a range of voltages, we use a
synthesized function generator (Stanford Research Systems Model DS345) which
produces a 250 mV amplitude triangle wave. The voltage across the sample is measured
using a preamplifier (Princeton Applied Research Model 113) via a multimeter (Hewlett
Packard 34401A) . The current through the sample is passed through a current
preamplifier (Ithaco 1211) and on to another Hewlett Packard multimeter for
measurement.

To gain an understanding of the nanoparticle sizes, we fabricated a series of pure

aluminum particles. The I-V curve, taken at 4.2 K, of one of these nanoparticle samples




is shown in Figure 4. As shown, there are a series of steps — representing the Coulomb
Staircase — in the [-V characteristics. The steps are 5 8 mV in width and show
characteristic thermal roundoff. The abrupt dip in current at the end of each step does not
appear in the other data; we believe it is an artifact of the data and not our measurement
process. For comparison, a computer simulation based on the orthodox theory of single-
electron tunneling has been fit to the data [8]. The nanoparticle parameters of the fit are
included in the figure. We estimate the nanoparticle radius for this sample to be 2.4 + 0.2
nm.

While the I-V curve shown in Figure 4 is promising, most of the samples we have
fabricated are high-resistance devices (R > 500 MQ). Resistances of this magnitude are
too large to be attributed to single charge tunneling. This may be due to a number of
problems in the fabrication process. For example, it is possible that we are not etching
completely through the nitride window, or that our oxide layers are significantly too
thick. It is also likely that many of our high-resistance devices were those in which an
island did not form under the opening in the nitride membrane. Other groups have
estimated that this will happen only about 20% of the time [9].

Despite these problems, we have fabricated copper-iron nanoparticle devices.
Unfortunately, none of the devices fabricated to date have displayed the Coulomb
Staircase behavior that is indicative of the single charge tunneling we hope to study. All
of the devices fabricated thus far have shown very linear, high resistance, conductance
behavior. One example of such behavior is illustrated in Figure 5. In this sample, the
resistance is 830 MQ. There is no obvious nonlinearity, such as a Coulomb Staircase, to

indicate that this device is in fact a single nanoparticle. The copper-iron nanoparticles are




much more complicated than the pure aluminum nanoparticles due to the fabrication of
the second tunnel junction. In addition to the reasons listed above for the aluminum high
resistance devices. it is possible that in making the copper-iron nanoparticles, the thin
aluminum layer is not being deposited properly. If the temperature of the sample is not
low enough at the time we deposit the 15 aluminum layer, the aluminum may form
small islands on the surface. This would lead to a very irregular tunnel junction between
the nanoparticle and the second lead. If, however, the aluminum is forming islands on
the surface, it is possible that no aluminum covers the nanoparticle. Because copper
oxidizes more quickly than aluminum, when we oxidize the sample, we may oxidize a
very thick copper layer which may lead to the high resistances which we see
demonstrated in Figure 5.

In conclusion. we have successfully fabricated 2-3 nm radius nanoparticles of
aluminum and are currently in the process of fabricating and measuring 0.01% iron-
copper alloy nanoparﬁcles. We believe the mixed system of aluminum leads and a
copper-iron nanoparticle is a viable system for the study of the Kondo effect in an
ultrasmall metallic grain. In addition to verifying the results of Thimm er. al., this system
will allow for the study of other interesting questions. For example, by controllably
increasing the iron concentration in the alloy, we may be able to study the effect of
interimpurity interactions. and use these interactions to estimate the size dependence of

the Kondo effect.
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Figure Captions

Figure 1: Voltage-biased double tunnel junction circuit. The two junctions each have a
small (~1 aF) capacitance, C; and C:, and a large (~20 mQQ) resistance, R; and Ry. The

nanoparticle itself has a radius r and a capacitance Cs.ir as shown.

Figure 2: Electron-beam lithography stage of nanoparticle fabrication.

Figure 3: Evaporation stage of nanoparticle fabrication.

Figure 4: Linear conductance from an aluminum nanoparticle. Also plotted is a
computer simulation of the system (see H. J. Lynch, thesis). The simulation parameters

are: C;=1aF,C;=28aF Ry =6. MQ, Ry=143 MQ, and T =4.2K.

Figure 5: Linear conductance at T =4.2 K of a copper-iron nanoparticle.
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Abstract

We have fabricated 2-3 nm radius aluminum nanoparticles as evidenced by dis-
tinct Coulomb Blockade steps in the linear conductance. We have fit these Coulomb
Blockade steps to a theoretical model based on the Orthodox Theory of single elec-
tron tunneling [1] in order to determine the size and junction characteristics of these
nanoparticles. Using the same fabrication technique, we are in the process of produc-
ing 2-3 nm radius 0.01% iron in copper nanoparticles. By investigating these dilute
magnetic alloy nanoparticles, we intend to verify the results of Thimm et. al. con-
cerning the complex interplay between spin-polarized tunneling and finite-size effects

in a “Kondo box” [2]. In this thesis, we present preliminary data in that regard.
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Chapter 1

Introduction

Although the electron-transport properties of metals have been well known and stud-
ied for nearly a century, it is only recently that technological advances in nanostruc-
tures have allowed researchers to investigate the breakdown of the bulk properties of
metals at the mesoscopic length scale (< 100 nm). Advances in both atomic-scale
imaging and nanofabrication now permit experimentalists to fabricate and, in turn, to
investigate systems in which discrete electronic states may be distinguished and single
electrons counted. One such system of recent interest is that of ultrasmall metallic
grains (size ~ 10 nm in diameter). This particular system has discrete, observable
energy levels at low temperatures which lead to dramatic consequences for the super-
conducting, magnetic, and optical properties of the magnetic grains. Current research
into these effects is exemplified in the work of Ralph et. al. [3] [4] [5] [6] [7] [8]. Here
we extend the technology developed by Ralph et. al. by doping copper (Cu) nanopar-
ticles with iron (Fe) atoms in order to investigate the Kondo effect. By scaling down
the sample size to the nanometer regime, several unprobed questions may be an-
swered, such as how the Kondo effect is affected by discrete energy levels and what
role interimpurity interactions play in conduction through doped metallic grains.
Recently, Thimm et. al. [2] have theoretically investigated the Kondo effect in a
doped ultrasmall metallic grain. As is well known, the Kondo effect arises in dilute
magnetic alloys and involves the interaction between the magnetic moment of the
impurity and the conduction band electrons of the host metal [9] [10]. Although
the Kondo effect in bulk samples has been studied experimentally for over sixty
years, Thimm et. al. investigate what happens to the Kondo effect if the impurity
resides in an ultrasmall metallic grain. In the case of this “Kondo box” system, the
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unpaired spin of the magnetic impurity couples to conduction band electrons with a
discrete density of states. Thimm et. al. have predicted that for grains with mean
level spacing A > kgT, where Tk is the characteristic Kondo temperature for the
alloy, the temperature dependence of the differential conductance will be measurably
affected in a way that will show evidence of the interplay between the Kondo effect
and the finite-size effects in the grain [2].

There are a number of different phenomena which interact when a magnetic im-
purity is introduced into a nanometer-sized metallic grain, including single electron
tunneling/Coulomb Blockade, the Kondo effect, and finite-size effects. Each of these
phenomena deserve, and have received, careful study!. The following experiment
proposes to investigate the electronic transport properties of an iron-doped copper
nanoparticle at low temperatures, a system which requires that all three phenomena
be accounted for. In Chapter 2, each of these phenomena will be discussed in the
context of this experiment.

In Chapter 3, we present a computer simulation based on the Orthodox Theory of
single electron tunneling [1] which calculates the linear conductance of our nanopar-
ticle devices as a function of the relevant parameters of the system. The purpose
of this computer simulation is two-fold. First, we use the simulation to understand
how the parameters of the devices affect the linear conductance behavior of our sam-
ples. Second, we can match our simulation to experimental data in order to extract
information about our samples which is inaccessible to direct measurement. In Chap-
ter 4 we discuss the fabrication and the measurement of our nanoparticle devices. In
Chapter 5, we present and analyze the data obtained from these nanoparticle devices.
Finally, in Chapter 6, we draw conclusions about this experiment and discuss avenues

for future research.

1For single electron tunneling, see References [11] [12]; for the Kondo effect see Refer-
ences [9] [10] [13].




Chapter 2

.Single Electron Tunneling and the
Kondo Effect

In order to understand the theory of single electron tunneling, it is necessary to review
the size and temperature regimes that delineate the behavior of tunneling through
metallic particles. As the temperature of a metal particle is decreased, the behavior of
the current as a function of the applied voltage passes through three distinct regimes
depending on both the size and temperature of the particle: These regimes are bulk
metallic, charge quantization, and energy-level quantization. For the purpose of this
discussion, given our nanoparticle fabrication techniques, we will consider a typical
nanoparticle to be 5 nm in radius. The bulk metallic regime (kgT > 100 meV) is most
familiar and refers to a system in which current I and voltage V are related through
Ohm’s law V = IR, where R is the resistance of the metal. In the regime of chai'ge
quantization (kgT ~ 1 meV), the energy required to overcome Coulomb repulsion
in adding a single electron to a nanoparticle is on the order of kgT. When this is
the case, the number of electrons on the particle is fixed, or quantized, according to
the thermal energy available to it. The last regime, energy-level quantization (kgT
~ 0.1 meV), occurs when the energy difference between adjacent energy levels is on
the order of kgT. This can be understood using a simple “particle-in-a-box” picture;
as the size of the nanoparticle “box” gets smaller, the energy level spacings become
larger. At some point, virtually all of the electrons exist in their ground state because
the energy to promote an electron to any higher state is not available.

How small and at what temperatures does a metal particle have to be before it

ceases to behave like a bulk metal? To answer this question, we need to calculate the
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energy level spacings at the Fermi level. Treating the electrons in the particle as a

Fermi gas, we know that the number of electrons with energy € < e is given by

where € is the Fermi energy, V is the volume of the particle, and m is the mass of
the electron.
Differentiating with respect to energy, we obtain the density of states at the Fermi

level to be
dN 37V [2m\¥? 4
B s (5m) (7)o (22)
3N
= 5. (2.3)

which may be rearranged to give the energy difference § between two, two-fold de-

generate, states at the Fermi energy

2ep '

=46 = (—dN 2.4

de =0 (3Nd) (24)
o 46F

= 3 (2.5)

The number of electrons, N, on a 5 nm radius particle of Cu is ~ 6 x 10%. Given
this and the Fermi energy of Cu (8.47 eV), we calculate 6 = 1.9 x10™# eV or T ~ 2
K. Thus, for a 5 nm particle of Cu, the thermal energy kgT below 2 K is less than
the energy level spacing and, therefore, the energy levels must be considered discrete.
In this regime of energy-level quantization, current flow through the nanoparticle is
no longer Ohmic but is instead dominated by the discreteness of the energy levels.

Between the bulk properties observed at high temperatures and energy-level quan-
tization observed at very low temperatures, a third, unique temperature regime exists
in which we observe a phenomenon known as Coulomb Blockade. Coulomb Blockade
is best understood by considering the circuit representation of nanoparticle tunneling
in Figure 2.1. In Figure 2.1, we have an approximately spherical nanoparticle with

radius r connected to metallic leads via two tunnel junctions'. The voltage difference

1 A tunnel junction is a thin insulating layer (in our experiment, a metal oxide) separating two non-
insulating regions which acts like a quantum mechanical tunnel barrier. Electrons cannot conduct
through the insulating region, but can pass through the insulating layer via quantum mechanical
tunneling.
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Figure 2.1: Voltage-biased double tunnel junction circuit. The two junctions each
have a small (~ 1 aF) capacitance, C; and C,, and a large (~ 20 MQ) resistance, R;
and R,. The nanoparticle itself has a radius r and a capacitance Cg)¢ as shown.

+V between the two leads is one which we apply externally to drive charges across
our nanoparticle. The two tunnel junctions and the nanoparticle can be thought of
as three capacitors with capacitances C,, Cy, and Cgg)s respectively. The two tunnel
junctions each have their own resistance R; and Rj.

Despite the quantum mechanical intricacies of tunneling through nanoparticles,
the basic features of Coulomb Blockade may be understood in the context of this
simple circuit. Basic electrostatics 2 allows us to write the energy it would take to
add a single electron with charge e to an isolated particle with capacitance C (such
as the one in Figure 2.1) as

2

EC = —2—5 (2.6)

where E is called the Coulomb Blockade energy. Note that C is the dominant

capacitance relating the particle to its environment and is given by

l_ 1 + 1
C_Cl+02 Cgelf

where C; and C, are the capacitances of lead 1 and lead 2 respectively, and Cse[f

(2.7)

is the self-capacitance of the nanoparticle discussed below. In Equation 2.7 we add
the capacitances in series, as the electron must tunnel sequentially from lead 1 to

the nanoparticle to lead 2. However, we consider the electron on the nanoparticle

2The energy of a capacitor with charge Q is given by Q*/2C.
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to couple to the entire environment (in this case, the two leads) simultaneously, and
therefore, we add the two junction capacitances in parallel.

The self-capacitance of the nanoparticle may be understood by considering a clas-
sical spherical capacitor. If an electron is added to a metallic sphere, the electrons
rearrange themselves to reduce the Coulomb repulsion and the capacitanée relates
the potential of the sphere to the charge placed on it. As the sphere gets smaller, the
electrons cannot rearrange themselves as well, and a greater repulsion is felt between
the charged sphere and the new electron. At some point, the voltage required to add
a single electron to the sphere is measurable, and below this minimum voltage, the
tunneling electrons are blocked by Coulomb repulsion - hence “Coulomb Blockade”.
In our experiment, the self-capacitance C,ey of the nanoparticle is defined to be the
capacitance of a simple electrostatic capacitor of the same geometry.

We see from Equation 2.7 that if either the junction capacitances or the self-
capacitance predominates, the expression for the capacitance of the device may be
simplified considerably. In order to do this, we will estimate these two capacitance
contributions. If the particles are spherical® the self-capacitance is simply Cgejf =
Ameor, where € is the permittivity of free space and r is the radius of the particle.
For a 5 nm radius particle, Cgojf ~ 0.1 pF. Using larger tunnel-junctions, the tunnel-
junction capacitance per unit area has been estimated at 7.5 x107° fF/nm? [4]. As-
suming a spherical nanoparticle with a 5 nm radius?, the tunnel-junction capacitances

are found to be

1
Ci=Cy = 75X 10_5—2-47r7'2 (2.8)
= 118 aF (2.9)

where we have taken the area of each tunnel-junction to be that of one hemisphere.
We see that the capacitances of the tunnel-junctions are approximately five orders of
magnitude smaller than the self-capacitance of the particle. For the purposes of cal-
culating the Coulomb Blockade energy, therefore, we can neglect the self-capacitance
of the particle and consider C in Equation 2.6 to be given by

3 As seen in Section 4.1, the nanoparticles are actually hemispherical in shape.
4As seen in Figure 4.4, the tunnel junctions are formed by oxidizing the outer layer of the
nanoparticle, hence, the dependence of the tunnel junction capacitance on the nanoparticle geometry.
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Figure 2.2: Energy schematic of Coulomb Blockade.

Using Equation 2.6, we can calculate the temperature regime in which we expect
to see Coulomb Blockade. Plugging C; = C, = 11.8 aF into Equation 2.10, we get that
C = 23.6 aF, which, plugged into Equation 2.6, yields a Coulomb Blockade energy of
3.4 meV or 39 K. For temperatures below ~ 40 K the energy needed to add a single
electron onto the particle® is on the order of kgT. This Coulomb Blockade energy
must be accounted for when calculating the tunneling rates through the nanoparticle.

Another way to understand Coulomb Blockade is illustrated in Figure 2.2 in which
we schematically represent the energies involved in this experiment. An electron
on lead 1 can neither tunnel into the full states that are lower in energy nor into
unoccupied states due to the Coulomb Blockade energy Ec. There are two ways in
which this Coulomb Blockade may be overcome. First, we can apply a voltage bias
across our sample and raise the energy of lead 1 as shown in Figure 2.2 to coincide
with the first unoccupied energy level. Electrons in lead 1 are then free to tunnel
onto the nanoparticle and off again to lead 2. The second possibility is to change

3Local environmental issues, including parasitic capacitances and quantum mechanical fluctu-
ations, drive the effective Coulomb Blockade temperature to much below what is theoretically
predicted.
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the energy levels of the nanoparticle using a third, gate electrode so that either the
electrons in the highest occupied state can tunnel off or so electrons may tunnel into
the first unoccupied state. This gate voltage is shown as V, in Figure 2.2. For
our experiments, we do not include a third electrode in our nanoparticle design and

instead apply a voltage bias across the leads to overcome Coulomb Blockade.

2.1 Calculation of Tunneling Rates

The tunneling of electrons through the two tunnel-junctions, and hence the current
through the nanoparticle, can be calculated as follows [1].
In general, the transition rate I';; between a discrete initial state 7 and a final

state f lying in a continuum with energy ¢ is given by Fermi’s golden rule,

Lo = 20| T(E) P py(e), (2.11)
where T'(¢) is the matrix element coupling the initial and final states and py(e) is the
density of states at the energy of the final state . In the double-junction system,
the expression for the tunneling rate must be modified slightly for two reasons. First,
the expression for tunneling must express the fact that both the initial and the final
states lie in a continuum. Second, we must account for the occupation probability
given by Fermi-Dirac statistics. Before the electron has tunneled, the initial states
must be occupied while the final state must be unoccupied. The transition rate ['1p
for the tunneling of electrons from lead 1 with energy £ (as indicated in Figure 2.1)
to the nanoparticle with energy € + eV is given by

dm [0 2 .

Tion = + ) | T(e) I* p1(€) f(€)pnle + €V)[1 — f(e + €V)lde (2.12)
where f(¢) accounts for the occupancy of the initial state at energy € and [1—f(e+€V')]
ensures that the final state at energy € + eV is vacant [14]. Over the range of eV
(which is very small compared to €) pi(€), pn(e+€V) and | T(e) [* may be considered

constant, transforming Equation 2.12 into

Ty = ih?? 1 T() P pr(e)onle+eV) [ £ = F(e +eV)]de. (2.13)

o ¢}
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The integral is evaluated in Appendix A but the solution
ar eV
r]—rn = —7__’— l T(E) |2 pl(é‘)pn(E -+ €V) [mﬁ;}

yields the tunneling rate for an electron in a lead with energy ¢ to the nanoparticle

(2.14)

with energy ¢ - eV/. In fact, Equation 2.14 is much more general. Let AE be the
energy difference between the initial and final state, and define a tunneling resistance

R, where R is given by Ai/(4me?p,p, | T(€) |?). The more general expression becomes

1 -AE
2R 1 — eAE/KT"

Tion(AE) = (2.15)

Note that the change in system energy due to tunneling across the junction in the
direction of decreasing bias voltage is -eV, and therefore, that the sign in Equation 2.15

corresponds correctly to Equation 2.14.
The definition of the tunneling resistance is motivated by an analogy to Ohm’s

Law. The total current through the nanoparticle is given by

I = 6(]:‘1_," - I"n_,l) (216)
4me eV eV

= En@me+ V) | TO P |y — zr—| @10

- 11}-;1 | T(e) [2 pr(€)pale + V)2V (2.18)

which may be rearranged to give the familiar V' = IR.

Clearly, in order to calculate actual tunneling rates for electrons through a nanopar-
ticle, it is necessarv to determine the change in energy AF of the system as an electron
tunnels on or off the nanoparticle through one of the two leads. The total change in
energy involves two terms - one accounts for the increase in energy due to Coulomb
repulsion among the electrons and the second accounts for the decrease in energy due
to the work done by the voltage source. Using Equation 2.6, we see that the elec-
trostatic energy W7 needed to add an electron to the particle via forward tunneling®

through lead 1 is given by

6 An electron may also be added to the particle via backwards tunneling through lead 2. However,
as the temperature T— 0, tunneling opposite the voltage bias becomes increasingly improbable, and
for simplicity, will not be considered in the analysis.



2.1. Calculation of Tunneling Rates 14

[(n+1)e + Qo> _ (ne +Qo)”

Wt = e — (2.19)
2

- 26—01 [(Qn +1) + 2%,} (2.20)

~ E¢ [(2n + 1)+ 2%"] (2.21)

where the forward tunneling increases the number of electrons on the nanoparticle
from n — n+ 1, Qo is the particle offset charge’, C; is the capacitance of lead 1, and
Ec is the Coulomb blockade energy. The second energy term Ey; accounts for the

work done by the voltage source and is given by®

Ey = —e22V (2.22)

where C, is the capacitance of lead 2, Cy = C;+C,, and V is the voltage drop between
lead 1 and lead 2.

The total energy change AE; due to forward tunneling of a single electron across
junction 1 is given by
2Q0] &

AEf(n—n+1) = Eo [(271 +1)+ 220 _ 22y, (2.23)
€ Cg

Similar reasoning will show that the energy change due to tunneling off of the nanopar-
ticle through lead 2 is given by
2Qo Cy

AE5(n—n—1) = Eg [(-2n +1) - 7] - etV (2.24)

The general expression for the rate of tunneling either onto (+) or off (-) the
particle across either junction (1 or 2) may finally be expressed as

1 .

+ + \ _
PI,Q(AEI,Q) - 62R _ eAEiE‘Q/kT

(2.25)

"The particle offset charge, which is always some fraction of the electron charge e, arises when
the chemical potentials of the nanoparticle and the leads are slightly offset.

8When an electron tunnels through junction 1, the potential on the nanoparticle changes. In
response to this change in potential, a polarization charge flows in from the voltage source through
junction 2. This explains why the energy for current flow through junction 1 depends on C. and
not C;.
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Equation 2.25 expresses the tunneling rate for all possible tunneling events for the
nanoparticle. The regime under investigation in this experiment is steady-state tun-
neling, whereby electrons are neither piling up nor being depleted from the nanopar-

ticle. Mathematically, this may be expressed as a set of linear equations

a(n = Dh1on = 0(n)Tnno " (2.26)

where o(n) is the probability that the nanoparticle will be occupied by n electrons,
and 'y, _,p, is the tunneling rate between an occupancy of n; and n, electrons. Equa-

tion 2.26 may be rearranged to yield the following recursive relation

1_‘n—m—l

o(n)=o(n-1) (F"—‘H—"> . (2.27)

Finally, we can derive an expression for the current as

I = e) on) [FT(n—)n-}-l)——Fl‘(n—)n-—l)] (2.28)
= ey o) [T3(n=>n-1)=Tf(n > n+1)] (2.29)

where the two equations must be equivalent in steady-state. Using Equations 2.28
and 2.29, along with Equations 2.25 and 2.27, one can theoretically predict the cur-
rent as a function of the voltage applied across a double-junction nanoparticle device.
In order to model our nanoparticle devices, we have written a computer simulation
which calculates the linear conductance (I vs. V) through a nanoparticle given the
relevant parameters of the device. The results of this simulation are presented in
Chapter 3, and in Chapter 5 we compare our simulation to our experimental data in
order to calculate key parameters about our fabricated nanoparticles.

The above treatment of tunneling through double-junction nanoparticle devices,
in addition to ignoring electron-electron interactions, has failed to mention the most
interesting aspect of tunneling through an Fe-doped Cu nanoparticle - the magnetic
moment of Fe. Previous experiments involving these nanoparticles have involved pure
aluminum (Al) [3] [4] [7] [8] or cobalt (Co) [5] nanoparticles. Although ferromagnetism
in nanoparticles has been investigated [5], there have been no published experiments
on alloy nanoparticles, in particular, dilute magnétid alloy nanoparticles. The in-

teraction of conduction-band electrons, such as those in the Cu, with the magnetic
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moment of the Fe impurity will have a dramatic effect, called the Kondo effect, on
the conduction of electrons through the nanoparticle. A brief introduction into the
Kondo effect will be presented in order to put the ongoing experiment in the context
of its larger goals. that is, observing the Kondo effect in the conduction of electrons

through an Fe-doped Cu nanoparticle.

2.2 The Kondo Effect

In order to understand the Kondo effect, which involves the scattering of electrons off
a magnetic impurity in a nonmagnetic metal, it is beneficial to take a step back aﬁd
consider the simplest of all scattering problems, hard sphere scattering. For example,
in the scattering of a small marble from a large marble, the potential U at a radius r
governing the interaction is a step function, i.e. U (r < R) = oo, U (r > R) = 0 where
R is the sum of the marble radii. The scattering particles do not interact except at
the moment of the collision and neither of the particles are fundamentally changed
by the interaction. A more complicated case involves the scattering between two
charged particles interacting through a Coulomb potential, for example, Rutherford
scattering. The Hamiltonian governing such an interaction is given by
1 d&|7|  z2Z€
H= 2™ d|t2 | + T

where ze and Ze are the scattering particle and target charges respectively, m is the

(2.30)

mass of the scattering particle and r is the distance between the particles. We see
from Equation 2.30 that the interaction depends only on the radial distance between
the scattering particles and their charges. Just as in the previous case, neither of
the charged particles involved in the interaction are fundamentally changed by the
interaction, i.e. each particle retains its charge and mass.

Consider, finally, the case in which the scattering particle and target interact not
only through their charge but also through their spin. Allow also the possibility
that these spins may actually be flipped by the scattering process such that the
outgoing particles are fundamentally changed by the scattering process. This fairly
simple extension of the canonical scattering problem results in some very interesting

physics. Since the target particle is changed in a given scattering process, the nature
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of the nezt scattering event will depend on the previous one. This results in a truly
many-bodied problem in which all the scattering particles are coupled through their
spin interaction with the target particle. It should be noted that spin has been chosen
as just one example through which the particles may couple. A more fundamental
statement is that the internal degree of freedom possessed by the scattering center
leads to a many-bodied problem, and, as we shall see, to some very interesting and
complicated phenomena.

The Kondo effect, one example of such a many-bodied problem, results from the
scattering of conduction-band electrons by a magnetic impurity in a nonmagnetic
metal. Although there are several ways to understand this problem, the interaction
Hamiltonian which most easily relates the Kondo effect with our previous discussion

is given by

Hup=-J Y (0wa-S)chucra (2.31)

ool K k!
where ¢}, and ¢, are the usual creation and annihilation operators which create
and annihilate (respectively) a conduction band electron with wavevector k and spin
a [9]. The exchange interaction is mediated through spin, as can be seen by the dot
product between oy,, the Pauli spin matrix for the conduction band electrons, and
S, the impurity spin operator. The magnitude of this spin exchange interaction is
governed by J, which is the (antiferromagnetic) interaction constant. Physically, the
interaction portion of the Kondo Hamiltonian in Equation 2.31 states: The incoming
electron with wavevector k and spin « scatters off the magnetic impurity into a state
with different wavevector k' and spin ¢/. This interaction depends on both the dot
product between the spins of the electron and the impurity and the magnitude of the
interaction constant J.

The full solution to this many-bodied problem evaded theorists for almost three
decades and will not be discussed here®. There is hope, however, for a fairly simple way
to understand the essence of the Kondo problem, i.e. an antiferromagnetic interaction
between the conduction band electrons and a magnetic impurity will result in a very
weakly bound singlet state in which the conduction band electrons condense around

the magnetic impurity in the form of a spin-polarized cloud.

9For a full review see Reference [13).
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2.2.1 The Anderson Zero-Band Width Model

There are several different ways to account for the interactions between a localized
moment and delocalized electrons. The Kondo Hamiltonian (part of which is Equa-
tion 2.31) is one way of understanding such an interaction. Another, and perhaps

more intuitive, representation is given by the Anderson Hamiltonian [10]

H=Y" ekcLack,a +Ungsnay + Y edcz,acd,,, + ; Vk,k(c{(",cd,g + CL,,,Ck,,,). (2.32)
ko 7 o

In the above equation. cLU (ex,») is the creation (annihilation) operator which creates
(annihilates) a plane wave in the conduction band with wavevector k and spin o.
Likewise, c};,‘, (cao) creates (annihilates) an electron in the d-level of the impurity
with spin ¢ in such a way that C};,,,Cd,a = n4,, the number operator that accounts
for the number of electrons in the d-level of the impurity with spin o. The energy
of an electron in the conduction band with wavevector k and spin o is ex, and the
first term in the Hamiltonian sums over all wavevectors k and spins ¢ to account for
all of the electrons in the conduction band. The energy of an electron in the d-level
of the impurity is €; and the third term in the Hamiltonian sums over all spins o to
account for all the electrons in the impurity orbital. The second term accounts for the
Coulomb repulsion that exists between two electrons in the d-orbital of the impurity.
The last term is responsible for much of the interesting physics in the system and
accounts for the mixing between the magnetic impurity and the conduction band
electrons.

Even a very simple model such as the one we will use, the Anderson Zero-Band
Width Model, illustrates the basic features of a Kondo system. We consider the
conduction band electrons as a single state at the Fermi level. By reducing the
conduction band electrons in this way, we map a very complicated many-bodied
problem to one with only two orbitals - one orbital for the impurity and one orbital to
represent the conduction band electrons of the host metal. For completeness it should
be noted that this analysis is predicated on a few physically-motivated assumptions.
First, we will assume that e¢; < ex but (e + U) > (ex — €4), i.e. although the
impurity energy is less than than the conduction band energy, the Coulomb repulsion

U between two electrons in the impurity orbital prevents, for all practical purposes,
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Figure 2.3: The Anderson Zero-Band Width Model. The conduction band electrons
have been condensed into a single orbital with wavevector k and the d-orbital electrons
of the impurity atom are represented as belonging to orbital d. The two orbitals are
related through a mixing term V4. Adding a second electron to the impurity orbital
costs an energy U which arises due to Coulomb repulsion. In our analysis, we consider
U— o0.

double occupancy of the impurity. Secondly, we will assume that the two orbitals
being considered are related through a mixing term Vg in the Hamiltonian, where
Vik < (ex — €4). The Anderson Zero-Band Width Model is illustrated in Figure 2.3.

Because the Kondo effect arises out of the mixing term Vy, it will be helpful to
discuss what the energy level scheme looks like with no mixing term, i.e. Vjx = 0.
With no interaction between the two orbitals, the ground state system has one electron
in each orbital giving a total energy of ex+¢4. This ground state is four-fold degenerate

due to spin with a spin singlet state

| ®s) = (1/V2)(chpcly — chycly) (2.33)
and a spin triplet state
CZ:TCL‘Ta
|Br) =S (1/v2)(chyely, + L), (2.34)
f ot
Cled_L.

Assuming Coulomb repulsion prevents double occupancy of the impurity orbital,
i.e. U= oo, the first excited state is one in which both electrons are on the metal

orbital. The energy of the first excited state is 2¢x.and the wavefunction is
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| Bege) = chach- (2.35)

The more interesting, and physically realistic, case is one in which Vgx # 0.
Inspection of Equations 2.33, 2.34, and 2.35 and the Anderson Hamiltonian 2.32
reveals that the first three terms of the Hamiltonian!® are diagonal with respect to
fhe five possible states. The first and third terms simply add up the contributions to
the energies in the conduction band and impurity respectively. These terms in the
Hamiltonian do not “mix” the two states, and therefore, they do not have any off-
diagonal terms. In order to complete the matrix that will account for the interactions
between the five states, we must determine the effect of the fourth term with the
mixing potential V;x which does “mix” states and will have off diagonal elements.

For clarity, the fourth term is written out explicitly as

Vd,k(CLTCd,T + CZ,TQQT) + Vd,k(cL 1Ca,y + CL’ 1Ck,4)- (2.36)

The first grouped term can be seen to “move” an electron with spin 1 from the
impurity to the metal and vice versa, whereas the second grouped term “moves” an
electron with spin | from the impurity to the metal and vice versa. The net effect of
the mixing term is to “swap” an electron between the impurity and the metal. Since
the three spin triplet states are symmetric under exchange, the mixing potential has
no effect on these states. Therefore, the entire Hamiltonian is diagonal with respect
to these three states. However, the ground state singlet and the excited states are not
symmetric under exchange between the impurity and the metal, and these states are
affected by the mixing potential. Our 5 X 5 matrix involving the spin singlet, triplet,

and excited state can now be reduced to the following 2 x 2 matrix

(2.37)

€a+ex V2
VV2 2 ] .

The diagonal elements represent the energies of the ground state singlet, with
one electron in each orbital, and the excited state, with both electrons on the metal
orbital. The off-diagonal terms represent the coupling between the two states by the

mixing potential V) and are derived in Appendix B.

19 Actually, the repulsive term is being ignored in the analysis altogether because, in the U — oo
limit, we discount the possibility of double occupancy on the impurity.
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To determine the effect that this coupling element has on the energies and wave-
functions of the two states under consideration, the above matrix is diagonalized.
The eigenvalues of the above matrix are calculated in Appendix B and are found to
be (€eze +2V?/Ae) and (€ging — 2V?/A€) where €ere = 26 and €ging = € + €4 and
A€ = e — €4. The eigenvalues represent the new energies of the excited and singlet
states respectivelv. The singlet state has been lowered in energy as a result of its
mixing with the excited state, and the excited state has been raised in energy. The
singlet state is now no longer degenerate with the triplet state and exists at an energy
2V? /A€ below that of the triplet state.

It is clear that since the singlet state is now of lower energy than the triplet state,
if T« Tk where Ty = (ZQBVTQE)’ only the singlet state will be populated and, since the
singlet state has no magnetic moment (s = 0), the magnetic impurity will no longer
have any magnetic moment'!. The magnetic moment is said to be “screened” by the
conduction band electrons in the metal. As T — Tk, the triplet states (s = 1) become
thermally populated, and a magnetic moment begins to appear on the impurity.

Even with a simple model such as the one used above, it is shown that the mixing
between the magnetic moment of the impurity and the conduction band electrons
result in the signature features of a Kondo system. As shown in Figure 2.4, there
exists a ground state singlet with s = 0 that lies some small energy below a low lying
triplet state with s = 1. The characteristics of the impurity clearly depend on the
temperature of the system.

The simple picture of the Kondo effect just presented may be summarized as
follows. The Hamiltonian (Equation 2.32) that accounts for interactions between a
localized magnetic moment and conduction band electrons contains a mixing potential
Vix. This mixing potential splits the four-fold degeneracy of the ground state of the
system, resulting in a ground state singlet state and a low-lying triplet state. At
appropriately low temperatures, only the ground state is occupied. Physically, the
conduction band electrons have condensed into a spin-polarized electron cloud that

screens the magnetic moment of the impurity.

1A full analysis will give a Kondo temperature given by Ty = ;%e:cp (—_—%%f—l) where D is half
the conduction band width when the band is half full, kp is the Boltzmann constant, €s is the Fermi
energy, vy is the impurity electron degeneracy, and I' is the width of the impurity electron level due
to its coupling with the conduction electrons [15].
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Figure 2.4: Energy schematic illustrating the Kondo singlet and Kondo triplet states.

Unfortunately, the relatively straightforward analysis made possible by the Ander-
son Zero-Band Width Model stops short of explaining how a ground state “screened”
magnetic impurity affects conduction through the metal, or in our experiment, con-
duction through the Cu[Fe] nanoparticle. There are a number of different ways in
which the Kondo effect may manifest itself experimentally, including unusual behav-
ior in the resistivity, conductivity or thermoelectric power. For brevity, we will depart
from our more general discussion of the Kondo effect to understand specifically how
the Kondo effect may be changed in the confines of a nanoparticle, and how these

effects may be probed experimentally.

2.2.2 The Kondo Effect in a Metallic Grain: A Kondo Box

With the introduction and proliferation of nanotechnology in the last few years, one
major trend in condensed matter physics has been to contemplate what happens to
unusual, but well understood, bulk phenomena on the nanoscale. It is both nontriv-
ial and very interesting to investigate how quantum ‘“particle-in-a-box” confinement

interacts with phenomena such superconductivity and charging effects. In recent
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Figure 2.5: Energy level diagrams illustrating the difference between the Kondo effect
in bulk metal vs. a nanoparticle.

theoretical work by Thimm, Kroha, and von Delft [2], this work has been extended
to the Kondo effect where it is predicted that quantum confinement may affect the
conduction of electrons through a doped metallic grain to a degree that is experimen-
tally measurable. The experimental work presented in this thesis seeks to find this
predicted effect by investigating the electron transport properties of an iron-doped
copper nanoparticle.

Before the results of Reference [2] are discussed, it helps to understand why, in
very general terms, the Kondo effect would be different in a nanoparticle as compared
to in a bulk sample. Consider the energy diagrams of Figure 2.5. In the left figure we
see that the magnetic moment of the impurity (represented as an unpaired electron
in the figure) couples to a continuous density-of-states (DOS) in the host metal. In
the right figure we see that the DOS in the nanoparticle is discrete, as we would
expect from standard “particle-in-a-box” considerations, and therefore the magnetic
moment of the impurity couples to a discrete DOS.

The theoretical work of Thimm et. al. [2] may be understood by stepping back
and considering the phenomenon of a Fano resonance. Fano calculated that in tran-
sitions from an arbitrary initial state to a non-interacting discrete state in resonance
with a continuum of states, one sees a distinctively asymmetric peak in the natural
line shape due to interference between tunneling to the discrete state and tunneling
to the continuum. Madhavan et. al. [16] calculated that for the case of tunneling

from an STM tip to a cobalt (Co) atom (which has interacting discrete states) on
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Figure 2.6: Sketch of a predicted differential conductance measurement for the Kondo
box system. The weights W; and W, are indicated by the shaded areas.

a Cu surface (which has a continuum of states), the Fano resonance line shape per-
sists with a width proportional to the Kondo temperature of the system. Thimm
et. al. expand this to consider the case where the discrete state is interacting and
the continuum is actually discrete. This is exactly the case for a magnetic impurity
in a nanoparticle. The electrons on the magnetic impurity, which forms the discrete
state, interact and the nanoparticle states, which form the “continuum”, are actually
discrete. The interference between these two channels of conduction, i.e. from the
lead to the nanoparticle and from the lead directly to the impurity, results in the
unusual conductance behavior we seek to measure as evidence of the Kondo effect in
a nanoparticle. Experimentally, we seek to detect this interference effect by looking
at the temperature dependence of the weights, W; and W, of the first two conduc-
tance peaks. A sketch of the differential conductance (dI/dV vs. V) measurement is
illustrated in Figure 2.6. The weights W; and W are the areas shaded in Figure 2.6
where the first and second conduction peaks have been indicated with dashed lines.
Note that the shaded areas are signed, i.e. the shaded area below the axis must be
subtracted from the shaded area above the axis.

We see in Figure 2.7 that for very small nanoparticles, when the mean level spacing
A > kpTk, the weights W; and W, do not monotomically decrease with decreasing
temperature. Instead, W, and W, bifurcate at T ~ 0.75T, with W; decreasing
sharply and W, increasingly sharply. It is this divergence from T > Tg behavior
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Figure 2.7: Temperature dependence of weights W; and W, predicted by Thimm
et. al.. The large figure indicates the temperature dependence when the mean level
spacing on the nanoparticle A = 3T . The inset indicates the predicted temperature
dependence for A = Tx. This figure has been reproduced from Reference [2].

that we intend to measure in this experiment.

2.2.3 Finding a Kondo System

We see from the above discussion that the effects we intend to verify experimentally
require that the mean level spacing A > kgTx, where Tk is the Kondo temperature of
the system. As each Kondo system has its own characteristic Kondo temperature, it
is imperative that the metals chosen for the experiment have a Kondo temperature in
the appropriate range for the experiment. As discussed in Section 5.1, we calibrated
this experiment by fabricating undoped aluminum nanoparticles, and hence, hoped
to find an aluminum alloy to use in the Kondo experiment. We originally consid-
ered aluminum doped with chromium atoms. Unfortunately, the resulting aluminum-

chromium alloy has an anomalously high Kondo temperature of 1200 K [17]; in fact,
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all aluminum alloys have high Kondo temperatures. In order to investigate the Kondo
effect in an aluminum-chromium nanoparticle with A = kgT g, we would have to fab-
ricate a nanoparticle which was 0.7 nm in radius. With our fabrication techniques,
we cannot reliably make < 1 nm radius nanoparticles, and hence, could not use the
aluminum-chromium system for our experiment.

Instead of an aluminum-chromium alloy, we chose to investigate the Kondo effect
using a 0.01% iron in copper alloy. This particular system has two major advantages.
The first is that the copper-iron alloy has a Kondo temperature of ~ 10 K [17]. For
this system, the appropriate nanoparticle size such that A = kgTg is ~ 3 nm, which
is well within the capabilities of our fabrication method. Second, the theoretical
work discussed in Reference [2] upon which this experiment is based calculates the
Kondo effect using the copper-iron system. Although the basic behavior illustrated
in Figure 2.7 will appear in any Kondo system, it is convenient to be able to make
quantitative, as well as qualitative, comparison with theory.

With a 0.01% concentration of iron atoms in the copper nanoparticle, we estimate
that a typical 3 nm radius nanoparticle will have 1-2 magnetic impurities. Ideally,
we would like to dope our copper so as to include only a single magnetic impurity
on each nanoparticle. In doing so, we eliminate interimpurity interactions. Also,
by controllably increasing the number of magnetic impurities per nanoparticle from
unity, we can then study the effect of those interimpurity interactions on the transport
through the nanoparticle. Unfortunately, with our fabrication techniques, we cannot
control the exact number of impurity atoms in each nanoparticle. Nevertheless, at iron
concentrations of 0.01%, we can safely ignore interimpurity effects, and by controllably
increasing the concentration of iron in our alloy, we can study the role of interimpurity

interactions in our experiment.




Chapter 3

Computer Simulation of Single

Electron Tunneling

From the discussion in Section 2.2.2, we see that the success of this experiment
depends on our ability to fabricate nanoparticles in the correct size range. One of
the most sensitive electrical methods for determining the size of the nanoparticle is
the size and shape of the Coulomb “staircase” that results when charges conduct
through a nanoparticle in the charge quantization regime discussed in Chapter 2.
In fact, the Coulomb staircase that results from single electron tunneling through
a nanoparticle can yield almost all of the important parameters of the nanoparticle
system. Referring to Figure 2.1, these are Cy, Ry, C;, Ry, and the offset charge Qo.
Using the junction capacitances and the experimentally determined oxide capacitance
of 7.5x107° fF/nm?, we can calculate the nanoparticle size.

The computer simulation discussed in this chapter is beneficial for two distinct
reasons. I'irst, it is useful as a tool for understanding how various changes in the
junction parameters (i.e. thicker oxide layers, larger particles etc.) will affect the
Coulomb Blockade. This will be the topic of this chapter. Second, the simulation
provides a way to extract fairly subtle information from experimental data. For
instance, in many cases, the data is too noisy to resolve the finer details of the
spectra, and therefore most of the junction parameters cannot be determined directly.
However, by fitting a simulated curve to the data, one can extract rough estimates
of the remaining parameters, leading to a better understanding of the nanopa.rticles
being investigated in this experiment. This will be demonstrated in Chapter 5. It is

important to keep in mind that the discussion which follows is a general argument
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Figure 3.1: Voltage-biased double tunnel junction circuit.

based on single electron tunneling and does not touch upon our primary goal - the
Kondo Effect. As we will see, Coulomb Blockade is a useful tool for extracting

information about the nanoparticles to be employed in the Kondo effect experiment.

3.1 Calculation of Junction Parameters

Before we can calculate the junction parameters, it will help to review the important
quantities in this experiment. Figure 3.1, the circuit diagram introduced in Chapter 2,
illustrates the parameters we wish to investigate.

There are seven parameters in this simulation - the tunnel capacitances C; and C,,
the tunnel resistances R; and R;, the nanoparticle offset charge Qg (discussed below),
the nanoparticle radius r and the temperature T. Because we disregard the self-
capacitance C¢ relative to the junction capacitances C; and C, (see the discussion
in Chapter 2), the nanoparticle radius does not directly enter into the simulation but
is instead extracted using the junction capacitances and Equation 2.8.

Given a plot of I vs. V for a metallic nanoparticle (or simulation), the junction

parameters may be determined using the following rules [14] [18]:

1. The mostly easily determined parameter is the capacitance of the larger capac-
itor, Cp~, which may be either C; or C, depending on the geometry of the
nanoparticle. The Coulomb staircase can be characterized by a certain period-

icity of steps. This characteristic step width, A V| is given by
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€

AV = ——
Cr>

(3.1)

and may be used to calculate Cg-.

2. An offset charge Qg found on the nanoparticle will shift the I vs. V curve in
voltage by as much as 40 mV. By measuring the position of the first positive
step V. and the first negative step V_ in the Coulomb staircase, and using Cp

from Rule #1, we can calculate Qg by

Q
Ve -V_ |= 2C—R°;. (3.2)

3. The next most easily determined quantity is the capacitance of the smaller
capacitor Cr.. For every large step in the Coulomb staircase corresponding
to tunneling across the Cgs junction, there is a (much smaller) step that cor-
responds to tunneling across the Cr< junction. This secondary current step
is much smaller than the primary step used in Rule #1, and if the junctions
are very asymmetric, i.e. RoCy > R,C;, it may be impossible to resolve. See

Reference [18] for more complete discussion.

4. Although here is no direct way to determine the junction resistances, R; and Ry,
the ratio of the junction resistances is related to the rounding of the Coulomb
steps!. In the limit of Ry/R; — oo, the step corners are perfectly sharp and
connect a perfectly vertical step with a horizontal plateau. For finite Ry/R;,
the step is not vertical but is characterized by some (steep) slope. This slope
can be related to the ratio of the resistances Ry/R;. Again, see Reference [18]

for more complete discussion.

5. The last piece of information to be gathered from a plot of I vs. V is a rough
estimate of 1/R>. By ignoring the Coulomb staircase altogether, one can obtain
a rough estimate of the macroscopic slope of the I vs. V curve. This slope is

1/3°R, which, for highly asymetric junctions, is approximately 1/R..

'Rounding in the steps is also related to temperature. Higher temperatures will allow electrons
to tunnel through higher resistance junctions, thereby mimicking a lower resistence junction at a
lower temperature.




3.2. Simulation of Single Electron Tunneling 30

Even a brief examination of these rules will illuminate how difficult it is to obtain
nanoparticle parameters by direct examination of the data (especially if the data
is less than ideal). However. if even a few of the more obvious parameters can be
measured directly, the rest may be determined by fitting a simulation to the data. In
Chapter 5, this is the procedure used to analyze the nanoparticles fabricated in this
experiment.

Having motivated computer modeling as a tool for analysis, we will introduce the

simulation and its various approximations.

3.2 Simulation of Single Electron Tunneling

The theory for single electron tunneling has already been presented in Section 2 and
the simulation follows from Equations 2.25, 2.27, and 2.28. An exact solution
requires that all possible tunneling events be considered. In order to consider all
possible tunneling events, in which the number of electrons n — n#1, all integer
values n from zero to the maximum number energetically allowed on the nanoparticle
0 (Nmaz) must be included in the calculation. This requires that all n simultaneous
equations for the occupation probability o(n) in Equation 2.27 be solved and that
the resulting o(n) be normalized to a total occupation probability of unity. As we
will see, it is a very good approximation to this solution to assume that only those

charge states closest to g,q are occupied?, i.e.

0(Nmaz — 1) + 0(Nimaz) = 1. (3.3)

This not only makes the code much simpler to write, but it also decreases the com-
puting time. The code for the exact solution is included in Appendix A. In order to
compare the approximated solution with the exact solution, we plot both the linear
conductance, I vs. V, and the differential conductance, dI/dV vs. V, for a given
nanoparticle in Figures 3.2 and 3.3.

The approximated solution is, indeed, an excellent approximation to the exact
solution. As may be seen in Figure 3.3, the approximation breaks down only at

the onset of each tunneling step. As a new occupation state becomes energetically

2The case of 0(Nmaz) = 1 is considered in Reference [18].
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Figure 3.2: Plot of I vs. V using both the exact solution (in blue) and the approximate
solution (in red) for a nanoparticle with the following parameters: C; = 1 aF, C; =
3aF, Ry =2 MQ, Ry =50 MQ, Qo = 0.0e, r =3 nm, T = 0.
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Figure 3.3: Plot of dI/dV vs. V using both the exact solution (in blue) and the
approximate solution (in red) for a nanoparticle with the following parameters: C; =
laF, Cy =3 aF, R; =2 M), Ry =50 MQ), Q¢ = 0.0e, r = 3 nm, T = 0. Note that
the approximate solution has been offset by 0.5 x 10 !,
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Figure 3.4: Plot of dI/dV vs. V for 0K, 30 K, 60 K, and 90 K. Nanoparticle parameters
are the same as in Figures 3.2 and 3.3.

favorable, Equation 3.3 is momentarily invalidated and the approximation deviates
from the exact solution. Despite reasonable agreement between the two solutions,
only the exact solution will be used through the rest of this thesis.

There are a number of different parameters of interest which may be explored
using this simulation. In particular, we will demonstrate how changing temperature,
the ratio of Ry/R;, the ratio of Cy/Cy, and the offset charge Qq affect the Coulomb
Blockade.

The effect of changing temperature is the easiest to understand. As the tempera-
ture is increased. the electrons tunneling on and off the nanoparticle have more energy
for the tunneling process. If the temperature is raised above some critical tempera-
ture, the electrons will have enough energy to overcome the Coulomb Blockade energy
and will tunnel on and off the nanoparticle unaffected by the charge quantization dis-

cussed in Chapter 2. We expect, therefore, that as temperature is increased, the
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Figure 3.5: Plot of dI/dV vs. V for Ry/R; = 3, 5, 10, and 15. Remaining nanoparticle
parameters are the same as in Figures 3.2 and 3.3.

Coulomb Blockade steps will become more rounded and less well defined. Eventually,
they should disappear altogether. We see that this is in fact the case in Figure 3.4
where we compare the Coulomb staircase for a range of temperatures from 0 K to 90
K. |

The next most easily understood parameters in the simulation are the resistances,
R; and Ry, of the two tunnel junctions. Since the electron must tunnel through one
junction and then through the other in succession, the two resistances add in series.
The total resistance is then approximately equal to the larger resistance, Ry. As can
be seen in Figure 3.5, as the resistance of the second junction R; is increased relative
to Ry, the total resistance through the nanoparticle increases, and hence the slope of
the I vs. V curve decreases. In Figure 3.5, we have plotted the linear conductance for
Ra/R; ratios of 3, 5, 10, and 15. Clearly, as the ratio of Ry/R; increases, the slope

(ignoring the Coulomb staircase) decreases.
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Figure 3.6: Plot of dI/dV vs. V for C,/C, = 3, 5, 10, and 15. Ry = 30 M2 and
remaining nanoparticle parameters are the same as in Figures 3.2 and 3.3.

In addition to the resistance ratio, it is also interesting to consider what happens
as the capacitance ratio C,/C, is varied. As can be seen in Equation 2.22, the change
in energy due to the work done by the voltage source as an electron tunnels across
the first junction is negative and depends linearly on the capacitance of the second
junction Cs. As C, increases relative to C;, there is a greater energy incentive for
tunneling across the first junction, and as a result, the electrons tunnel onto the
nanoparticle at lower voltages. This leads to narrower steps in the Coulomb staircase
as the ratio of Cy/C, increases. In Figure 3.6, where we have plotted the linear
conductance for Co/C; = 3, 3, 10, and 15, we see exactly that phenomenon.

The final parameter of interest is the offset charge Qp. The offset charge Q,
which was first introduced in Chapter 2, is an electrical charge which results from a
slight offset in the nanoparticle and lead chemical potentials and acts like a fractional

electron lying on the nanoparticle. Changing the offset charge will shift the entire
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Figure 3.7: Plot of dI/dV vs. V for Qp = 0.0e, 0.1e, and 0.2e. Note that e is a
negative quantity. Remaining nanoparticle parameters are the same as in Figures 3.2
and 3.3.

Coulomb staircase slightly to more positive or to more negative voltages depending
on its sign. If the offset charge is negative, for example, the barrier for the first
electron to tunnel onto the nanoparticle will be slightly greater than normal because
the electron must overcome the standard Coulomb repulsion plus the extra Coulomb
repulsion of that fractional charge. This will shift the entire Coulomb staircase to
the right. This is exactly what we see in Figure 3.7 where we have plotted the linear
conductance for Qp = 0.0e, 0.1e, and 0.2e. Without a gate electrode, there is no way
to control the offset charge on the nanoparticle.

We have now closely investigated all of the parameters that affect the structure
of the Coulomb staircase. Now that the theory behind single electron tunneling has
been discussed both through basic principles and using a computer simulation, we

can move on to a discussion concerning the fabrication of such metallic nanoparticles.




Chapter 4

Fabrication and Measurement

There are three major stages to the fabrication of the Fe-doped Cu nanoparticles
investigated in this experiment: The first stage involves a KOH etch that creates
the silicon nitride membrane window which serves as the nanoparticle substrate; the
second stage involves electron-beam lithography and a reactive-ion etch (RIE) to
define a small (~ 4 nm in diameter) hole in the nitride window; the third stage
involves evaporating a series of metallic layers on both sides of the 4 nm hole in
order to create the nanoparticle and its two electrical leads. All of these steps are
illustrated in Figures 4.1, 4.3 and 4.4. Although the basic method may be found
in other references (see, for example, Reference [3]), the details of the nanoparticle
fabrication are specific to our nanoparticle design and, therefore, have been included
below. Note that other references have fabricated devices in which the leads and
nanoparticle are of the same metal. For reasons discussed below, we have constructed
a heterogeneous device in which the leads are aluminum and the nanoparticle is a

copper/iron alloy.

4.1 Fabrication of Cu[Fe|] Nanoparticles

The first stage in the process, illustrated in Figure 4.1, is to create a low-stress, free-
standing membrane which serves as the substrate for the nanoparticle fabrication®.
As a first step, a 50 nm thick layer of Si3Ny is deposited on both sides of a standard 3”
diameter, 15 mil thick, Si[111] wafer. There are two different plasma deposition sys-

tems which can deposit such a layer. A Plasma Enhanced Chemical Vapor Deposition

1A detailed description of the nanoparticle fabrication process has been included in Appendix D.
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(PECVD) system, such as the one in the Sohn laboratory at Princeton University,
deposits SizN; lavers with microscopic pinholes. These pinholes allow for a chemical
etch, such as the KOH etch used to create the windows, to penetrate through the
SigNy layer and destrov the silicon substrate. A second system, using Low Pressure
Chemical Vapor Deposition (LCPVD), does not have this particular pinhole problem.
Consequently. a 50 nm thick LPCVD Si3N4 layer was deposited on our Si substrates
at the National Nanofabrication Users Network Facility at Cornell University. The
SizNy4 layer deposited on the “bottom” of the wafer becomes the free standing nitride
window, and the Si; N4 layer on the “top” serves as a mask for the chemical etch. Us-
ing the PECVD system, we deposit a second 50 nm layer of Si3N4 on the “window”
side of the wafer. This nitride layer, while quickly etched away in KOH, protects the
thin nitride laver from scratches during photolithography.

A 4 x 4 grid of 5 x 5 mm square windows is defined on the Si3N4 wafer using
photolithography. The mask pattern used for the photolithography is shown in Fig-
ure 4.2. Next, the native silicon oxide layer and the SigN4 layer on the nitride-covered
silicon wafer are removed using a CHF; reactive-ion etch (RIE) so as to expose the sil-
icon wafer within the photolithographically-defined squares. The wafer is then placed
in a 30 % (by weight) KOH solution at 80-85° C. The KOH etch can take from 2 to
5 hours depending the the concentration and temperature of the solution. As seen in
Figure 4.1, the KOH will etch the silicon wafer preferentially in the <111> direction
at an angle of 54° from the wafer surface, and the 5 mm x 5 mm squares defined
using photolithography etch to free-standing SisN4 membranes which are 500 pym x
500 pm in dimension.

On the SizN; membrane, we next prepare a bilayer of electron-beam resist (PMMA/
MMA 10% by weight and 1.5% 950K PMMA). Using electron-beam lithography, a
hole ~ 40 nm in diameter is created in the bilayer of resist. This hole exposes a tiny
dot in the silicon membrane in the same way that the photolithography exposed a
portion of the original wafer for the KOH etch. Using another CHF'3 RIE etch, this 40
nm hole is transformed into a bowl-shaped formation which just breaks through the
bottom of the membrane, leaving an opening in the membrane ~ 4 nm in diameter.
These steps are illustrated in Figure 4.3.

Onto the “bowl” side of the wafer we evaporate 1000 A of aluminum, which fills
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Figure 4.1: Steps involved in the fabrication of SigN4 windows.
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Figure 4.2: Mask design for photolithography.

the bowl and provides stability to the sample. The sample is then oxidized in 50 mT
of pure O, for 2 minutes. This creates a thin oxide layer at the 4 nm opening in the
membrane window. On the other side of the sample, we evaporate ~ 20 A of a 0.01%
Fe in Cu alloy?. This layer forms islands on the surface of the membrane. The device
will only be successful if one of the islands forms under the opening in the membrane.
In the next step we deposit a very thin 10-15 A layer of aluminum onto the islands and
oxidize in 50 mT of pure O, for 2 minutes as before. Ideally, the oxidation is timed
precisely so that all the aluminum, and none of the copper nanoparticle, has been
oxidized. We have, in effect, deposited a 15 A layer of insulating Al,O3. Finally, we
evaporate another 1000 A of aluminum to form the second lead of the nanoparticle.
These steps are illustrated in Figure 4.4.

The thin film deposition mechanism at this stage of the fabrication is not well
understood. There are three mechanisms by which a thin evaporated film may form
on asurface. There is layer growth, island growth, and layer followed by island growth.
The first two are briefly discussed in Chapter 5; for a more in depth treatment, see
References [19] and {20]. It should be noted, however, that in order to promote island
growth for the Cu[Fe] layer, it is necessary to keep the sample at, or above, 300 K.
This is achieved by turning off the cooling water to the sample manipulator. It is also
necessary to promote layer growth for the aluminum. In order to keep the sample
appropriately cold for this evaporation, the sample must be kept at 77 K by running

liquid N instead of cooling water through the sample manipulator. The specific

2This alloy was prepared by ACI Alloys in San Jose, CA.
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Figure 4.3: Electron-beam lithography stage of nanoparticle fabrication.

deposition parameters are discussed in depth in Chapter 5.

4.2 Electron-Transport Measurement

In our experiment, the electron-transport properties of the nanoparticles are measured
using two systems. After fabrication, the linear conductance of the nanoparticles is
measured at 4 K in order to select viable samples. Those samples exhibiting Coulomb
Blockade are investigated more closely using differential measurements over a range
of temperatures from 10 - 50 K. Both of these measurement schemes will be discussed

in detail below.
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Figure 4.4: Evaporation stage of nanoparticle fabrication.
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Figure 4.5: Schematic of sample holder and four-point measurement.

4.2.1 Linear Conductance Measurements at 4 K

The linear conductance measurements at 4 K are performed in a 100 L helium dewar.
The sample is sandwiched between two teflon triangles which are held together by
screws at the corners. As shown in Figure 4.5, there are two copper wires held
below the sample and two above the sample. In a standard four-point measurement,
two wires will be used to measure the current and the other two to measure the
voltage across the sample. The sample holder designed for the nanoparticle samples
is illustrated in Figure 4.5.

The sample holder in Figure 4.5 is screwed into a brass plate which is itself affixed
to the bottom of an insertable cryogenic probe. The cryogenic probe is illustrated in
Figure 4.6. The four wires are soldered to pins, which are inserted into a four pin
connector at the side of the brass plate. The four pin connector is, in turn, connected
to a ten pin connector at the top of the probe. This ten pin connector is used to
connect the entire dewar/probe system to the electronics.

In order to take data at several different temperatures, we need to both measure
the temperature at the sample and change that temperature over the correct range.
In order to measure the temperature, we attached a Cernox Resistance Temperature
Sensor to the brass plate on which the sample holder sits. Two wires are soldered to

the temperature sensor and are connected at the top of the probe to a second ten pin
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Figure 4.6: Schematic of insertable cryogenic probe.
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Figure 4.7: Schematic of electronics for the linear conductance measurements. Ele-
ments in the primary circuit are connected with solid lines, while the elements used
for measurement are connected to the primary circuit via dashed lines.

connector. In order to reduce the noise in the data due to the temperature measure-
ment, we isolated the two sets of wires from the sample to the ten pin connectors as
shown in Figure 4.6. In order to measure the temperature, a Model 340 LakeShore
Temperature Controller is connected to the ten pin connector at the top of the probe.
To vary the temperature throughout the range of 10-50 K, we insert the measurement
probe by incremental amounts into the helium dewar.

The probe is evacuated with a mechanical pump® and helium gas is released
into the evacuated probe as a heat-exchange gas. The insertable cryogenic probe
is designed to fit through the top and into a 100 L liquid helium dewar. Submerged
in liquid helium, the probe and the sample are then cooled down to 4.2 K.

To perform the four-point measurement, we apply voltage across the sample using
a synthesized function generator (Stanford Research Systems Model DS345) which
produces a triangle wave with some amplitude V.., where V,,,, can range from
80 mV to 500 mV depending on the sample. The current is measured by passing
it to ground via an Ithaco 1211 Current Preamplifier. The voltage across the sam-
ple is measured simultaneously with a Princeton Applied Research Model 113 Pre-
Amplifier. The outputs from the current and voltage preamplifiers are digitized using
two Hewlett Packard 34401 A multimeters and sent to a computer for storage. In this
way, the current across the sample may be measured through a range of voltages. A
schematic of the electronics is included in Figure 4.7.

It should be noted that, although the samples are mechanically stable, they are

3Were the cryogenic probe not evacuated, water in the probe might condense and freeze on the
electronics.
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Figure 4.8: Schematic of electronics for the differential conductance measurements.
Elements in the primary circuit are connected with solid lines, while the elements
used for measurement are connected to the primary circuit via dashed lines.

extremely charge sensitive. We were extremely careful to avoid static electricity while
handling the samples and the voltage range considered for our linear conductance

measurements was limited to & 500 mV.

4.2.2 Differential Conductance Measurements at 10-50 K

In order to measure the differential conductance of our samples, we modify our elec-
tronics from that presented in Section 4.2.1. Using the synthesized function generator,
we add a small AC perturbation to the DC signal we pass through our sample. The
AC component of the current signal is measured using a Stanford Research Systems
Model SR830 DSP lock-in amplifier. The DC bias is measured using the Princeton
Applied Research Model 113 Pre-Amplifier set up to pass only low frequency signals.
Since the AC signal is small compared with the DC bias, the measurement provides
a probe of the slope of the conductance curve as a function of the applied bias. As
before, the outputs from the voltage preamplifier and the lock-in amplifier are dig-
itized using two Hewlett Packard 34401A multimeters and sent to a computer for
storage. A schematic of the electronics for the differential measurement is included

in Figure 4.8.

4.3 Data Analysis

In Chapter 5, we present I-V curves obtained in this experiment. Ideally, the data

from each device was obtained by taking several voltage sweeps of the sample. In
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order to highlight large scale structure (i.e. Coulomb Blockade) and average out
background noise, we use a computer program to process the data. This program
inputs all of the I-V data, sorts it according to voltage, bins the data according to
voltage bins (~1 mV in width), and averages all the data points in each bin. In this
way we are able to look more sensitively at the data obtained in this experiment.
In some cases, only one voltage sweep was made before the sample “died” due to
electrical stress. These cases are mentioned specifically; in all other cases we have
processed the data as mentioned above to average over many voltage sweeps.
Having explained the background theory, studied the parameters using computer
modeling, discussed the experimental fabrication and measurement scheme, and clar-
ified our analysis technique, we next discuss in detail the data obtained in this exper-

iment.



Chapter 5

Data and Analysis

There were two major stages to this experiment. In the first stage, we fabricated pure
aluminum nanoparticles with aluminum leads and measured the linear conductance
at 4 K. We chose this relatively simple system in order to develop the techniques for
nanoparticle fabrication. By measuring the electron transport properties of aluminum
nanoparticles, we were able to characterize the nanoparticles we might expect to see
in the more complicated copper-iron system. This is best described as the “calibra-
tion stage” of the experiment. In the second stage, we fabricated iron-doped copper
nanoparticles and studied the differential conductance as a function of temperature
in order to investigate the Kondo effect. Both of these stages will be discussed in

depth below.

5.1 Al Nanoparticles

Figure 5.1 is a representative linear conductance measurement we obtained from our
aluminum nanoparticles. The fabrication for this sample follows that described in
Chapter 4 with the exception that instead of depositing a Cu-Fe alloy and then
an Al layer, we simply deposited a layer of Al for the nanoparticles and oxidized
the nanoparticle surface to form the second tunnel junction. Although the data is
relatively noisy (fluctuations +50 pA), five steps in the Coulomb Staircase are clearly
visible. Superimposed on the data in Figure 5.1 is the computer model developed in
Chapter 3 with the following input parameters: C; = 1.0 aF, C; = 2.8 aF, Ry = 6
MQ, Ry = 143 MQ, and T = 4.2 K. Using the fitted capacitances and Equation 2.8,

we estimate a 2.4 £ 0.2 nm radius for this aluminum nanoparticle. We were not able
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Figure 5.1: Linear conductance from an aluminum nanoparticle. Also plotted is the
computer simulation discussed in Chapter 3. The simulation parameters are: C; =
1.0 aF, C, = 2.8 aF, R; =6 MQ, R, = 143 MQ, and T = 4.2 K.

to determine the offset charge, Qp, for this device due to a DC offset in both the
current and voltage measurements.

As discussed in Chapter 3, the simulation and the experimental data play com-
plementary roles in the analysis process. From the data shown in Figure 5.1, we
were able to determine the average voltage step width, < V >, of 57.2 mV 4+ 8 mV.
Using this < V' > and Rule #1 (Equation 3.1) from Chapter 3, we calculate that the
larger of the two capacitances, Cgs., is 2.8 + 0.4 aF. Now that two of the simulation
parameters have been determined, Cp> = 2.8 aF and T = 4.2 K, we can attempt to

find values for the other parameters which will most clbsely fit the experimental data.
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Using an iterative process, we select educated but otherwise arbitrary guesses at the
four unknown parameters, plot the resulting model against the data, and adjust the
parameters accordingly. We continue this process until we get a best, “by-eye”, fit to
the data. The purpose of Chapter 3 was to ensure that all of the parameters involved
in the single electron tunneling model were well understood so that at this stage,
finding the correct parameters in this four-dimensional parameter space was a rea-
sonable task. It should be noted that the nanoparticle parameters given for the data
in Figure 5.1 are only approximate. Since the goals of this particular nanoparticle
experiment were to a) develop the fabrication technique and b) estimate nanoparticle
parameters obtained from this technique, both of these objectives may be fulfilled
without getting an exact fit to the data in Figure 5.1. Finally, by examining the
effects of changing each parameter separately, we see that each parameter affects the
linear conductance differently, and we believe the fit to be unique.

It is also important to note that the data in Figure 5.1 comprises a single sweep
in voltage across the nanoparticle. Ideally, the data obtained from these nanoparticle
devices is comprised of many sweeps, the data for which are averaged together to
form a single, averaged data plot. This was not possible for the sample in Figure 5.1
because, as the direction of the sweep was changed at the top of the sweep, the sample
“died”. More care was taken in the future to avoid destroying the sample with rapid
changes in voltage or sweep direction.

Another sample which demonstrated a Coulomb staircase structure is shown in
Figure 5.2. Unfortunately only one Coulomb step can be resolved in the data and,
hence, it is impossible to determine the voltage width of the step. As the voltage
width is related to the larger capacitance, Cp, which is used to calculate the particle
radius, it is not possible to determine the particle size for this sample. Since AV
>0.7 V, we can, however, state that the nanoparticle radius is <1 nm. With our
fabrication technique, we do not routinely fabricate nanoparticles with radius <1 nm.
Nevertheless, the linear conductance behavior is distinctive of a Coulomb step and
we believe this sample to represent a <1 nm radius nanoparticle. The parameters
used in the computer fit are: C, = 1.0x1073 aF, C, = 0.5 aF, R; = 0.5 M, R,
= 1.0 M2, and T = 4.2 K. Note that, for reasons just discussed, these simulation

parameters are only rough estimates of the true ﬁanbparticle values. As with the
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Figure 5.2: Linear conductance from an aluminum nanoparticle at 4.2 K. Also plotted
is the computer simulation discussed in Chapter 3. The simulation parameters are:
C; =1.0x1073 aF, C; = 0.5aF, R; = 0.5 MQ, R, = 1.0 MQ, and T = 4.2 K.

previous sample, we were not able to determine the offset charge, Qp, due to DC
offsets in the experimental data.

To summarize the data and corresponding fits of Figures 5.1 and 5.2, it is clear
that the fabrication process described in Chapter 4 does produce nanoparticles in the
size range which we are interested in using for the Kondo experiment.

While the I-V curves in Figure 5.1 and 5.2 are promising, most of the samples
did not result in a Coulomb staircase structure. In general, the devices we fabricate
fall into four categories according to their conductance behavior - successful devices
displaying Coulomb Blockade (500 k2 < R < 100 m{2), high resistance devices (R
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Figure 5.3: Linear conductance at 4K from a high-resistance aluminum nanoparticle.

> 500 MQ2), variable resistance devices displaying unusual temperature dependence,
and diode devices displaying rectified behavior'. The devices demonstrating Coulomb
Blockade have already been discussed. The rest of the discussion will be dedicated
to understanding what physical mechanisms may be responsible for the unsuccessful
devices and what might be changed in the fabrication to eliminate these problems.
The most common types of devices produced in this experiment were high-resistance

devices. One example of such a device is shown in Figure 5.3. The resistance of this
device is 260 GS2. There are several possible explanations for these extremely high-
resistance devices, and each will be examined separately.

INote that the resistance being referred to is Ry, the largér of the two junction resistances, which
is responsible for the overall slope of the Coulomb staircase.
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The first possible explanation is that the electron-beam lithography is not fully
penetrating through the resist due to poor focusing or insufficient dwell time. Whereas
we had originally exposed our samples in the middle of the 500 ym x 500 ym window,
approximately 250 um away from where we had last focused the beam, we changed
our procedure to define our 40 nm dot at the edge of the window, only 50 um from
the last focus spot. We also ran a test pattern to determine exactly what dwell time
would be appropriate to create 40 nm holes in the resist. This particular method
consisted of exposing a nitride window to a grid of dots, with dwell times ranging
from 200 - 20,000 us. We then cold sputtered ~ 100 A of AuPd and viewed the
resulting pattern using a scanning electron microscope (SEM). Using this method,
we determined that a dwell time of ~ 14,000 us was appropriate to define a 40 nm
diameter hole in the resist. Previous samples, such as that shown in Figure 5.3, were
fabricated with a dwell time of only 2000 us. Since the correct dwell time was seven
times longer, we can conclude that many of our high-resistance devices were due to
poor conduction through a portion of the SigN4 membrane.

Another possible explanation for the high-resistance devices is that the CHFj3
reactive-ion etch (RIE) did not fully etch through the Si3zN4 membrane window. Once
it was determined that 14,000 us exposure time was sufficient to define the proper hole
in the resist, we tried varying the etch time to ensure that we were, in fact, etching
fully through the nitride membrane. Since the CHF; etch will also etch through the
resist (albeit at a slower rate than the SigNy), the etching time is limited by the
thickness of the resist which protects the unexposed portion of the nitride membrane.
We found that the longest time we could etch the sample without etching completely
through the resist was ~12 minutes. Since the geometry of the thin membrane limits
the amount of SizN, etching that is possible, we used the maximum amount of etch
time allowed by the resist without fear that we would “over-etch” the sample. It
is still possible that 12 minutes is not enough time to completely etch through the
sample. To explore this possibility it will be necessary to move to a different type of
resist.

Yet another possible explanation for the high-resistance devices is the oxide layer.
One of the benefits of developing the techniques using aluminum nanoparticles is the

relative simplicity of making an oxide with aluminum. The most obvious way to
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oxidize the aluminum sample is to expose it to air. For much of this experiment, this
was the method which we used. In order to use a more easily reproducible method
for oxidizing the samples. we switched to oxidizing our samples in pure O,. Other
experiments using the same nanoparticle design report oxidizing their samples in 50
mT of pure O, for 2 minutes [3]; accordingly, this was the oxide recipe with which we
started. It is possible that for the geometry of our system, 50 mT for 2 minutes creates
an oxide layer that is too thick. If this is the case, it would explain the predominance
of high-resistance devices among our samples.

The final explanation for the high-resistance devices would be that an aluminum
island is not forming at the opening in the SigN4 membrane. As discussed in Sec-
tion 5.2.2 below. the formation of islands during the thin aluminum deposition is a
statistical process, and islands will form randomly along the surface of the membrane.
It is only by chance that an island will form under the opening of the bowl. Other
groups have reported that in 20% of the samples a nanoparticle will form under the
bowl opening [14]. It is possible that many of the high-resistance devices that we
measure are good devices in which an island did not form under the opening of the
bowl. Although there is no obvious method for improving the chances that an island
will form at the opening in the nitride membrane, we may produce more successful
samples simply by fabricating and testing a large number of samples in parallel.

Several of the samples demonstrated unusual temperature dependence in the linear
conductance. In Figure 5.4 we show the linear conductance of an aluminum nanopar-
ticle sample as it warms from 4.2 K to room temperature. As the sample warms, the
conductance through the sample increases continuously from being almost zero over
the entire voltage range measured to being significant at room temperature. Unfor-
tunately, other than at the end points of the temperature spectrum, the I-V curves
in Figure 5.4 are not temperature resolved. In order to study this unusual tempera-
ture dependence more carefully, we chose another sample which demonstrated similar
behavior and measured the resistance? as a function of temperature. The family of
curves for this sample is shown in Figure 5.5. The resistance clearly depends strongly
on the temperature, and hence most of the curves in Figure 5.5 cannot be resolved.

For this reason. the slopes of these I-V curves, which will be used extensively in the

2The resistance was measured by taking a best fit line to the I-V curve in the range -10 mV < V
< 10 mV.
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Figure 5.4: Linear conductance from an aluminum nanoparticle as the sample warms
from 4 K to room temperature. The lowest current curve is the 4 K curve, and the
highest current curve is the room temperature curve. All other curves lie linearly
between these two temperatures.

following discussion, are included in Table 5.1.

Ideally, the conduction through our nanoparticle devices is dominated by transport
through a metallic nanoparticle. If this is not the case, we can hope to understand
what 25 dominating the transport through these devices by examining the temperature
dependence in Table 5.1. By identifying the dominant mechanism by which electrons
conduct through our samples, we can hope to correct our fabrication technique in
order to increase our yield of successful devices.

The first question to ask is whether or not the conductivity in Table 5.1 may be
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Figure 5.5: Linear conductance from an aluminum nanoparticle for a range of tem-
peratures from 290 K to 11 K.

explained by simple conduction through a metal. It can shown that resistivity in met-
als is due entirely to deviations from perfect periodicity of the ions in the lattice [21].
For undoped metals, such as the aluminum nanoparticles we are considering, the
greatest contribution to deviations in the lattice is due to thermal vibrations of the
ions from their equilibrium positions. As the temperature decreases, the ions have
less energy to vibrate about equilibrium. This decreased ion motion at lower tem-
peratures causes the resistivity in metals to decrease with decreasing temperature?.

We can see immediately that this behavior does not match that seen in Table 5.1

31t was a logarithmic increase in resistivity with decreasing. temperature that was the first ex-
perimental evidence of the Kondo effect.
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temperature (£ 1K) | resistance ()
290 8.54x10%
155 1.42x10°
124 3.78x 108
109 8.53x10°
98 2.24x107
87 5.27x107
61 4.56x108
40 4.52x10"

Table 5.1: Temperature vs. resistance for aluminum nanoparticle sample. The error
in the resistance measurement is negligible compared to the error in the temperature.

and can conclude, therefore, that conduction in metal does not dominate the electron
transport through these variable resistance nanoparticle samples.

The second question to ask is whether or not the superconducting behavior of
aluminum at very low temperatures could be responsible for the unusual temperature
dependence we see in Figures 5.4 and 5.5. However, since the critical temperature T,
for aluminum is 1.2 K, and the unusual temperature dependence is seen at temper-
atures T > T, we cannot explain our data by considering superconductivity in the
aluminum.

As another attempt, we can ask whether or not the unusual temperature depen-
dence can be explained by considering conduction through a semiconductor. Although
we do not expect to have any semiconducting materials in our devices, consider the
possibility that in our fabrication, we did not etch completely through the SisNj
window. In that case, electrons from the first electrical lead would have to tunnel
through a very thin (<« 50 nm) layer of insulating SizN4 before reaching the nanopar-
ticle. Evidence of semiconducting behavior would give us valuable information about
the quality of our “insulating” Si3Ny4 layer.

Semiconductors are characterized by a band gap E, which is small enough that
thermal excitations can lead to significant conductivity. The fraction of electrons
excited from the valence band across the band gap to the conduction band is directly

proportional to the conductivity ¢, which is related to the band gap by
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-E
g~ exp (5.1)
where T is the temperature available for thermal excitations and k is the Boltzmann

constant. Since the resistance of the sample must then be related by

R~ exp%‘ (5.2)

a plot of In R vs. 1/T should result in a straight line with slope equal to E4/k, where
E, is the band gap and k is the Boltzmann constant. We have plotted the data in
Table 5.1 in this manner; the results are shown in Figure 5.6. We see that In R and
1/T are, in fact, linearly related with a slope of 686.6 = 0.2 K. From this slope we
calculate the band gap to be 59.22 £+ 0.02 meV. Typical semiconductor band gaps
range from 100 meV to ~ 5 eV. Since our calculated band gap is significantly out of
this range, we conclude that, despite the close linear relationship between In R and
1/T, the conductivity through the sample is not dominated by simple conduction
through a semiconductor.

Another possible explanation for this unusual temperature dependence is the phe-
nomenon of “variable range hopping” [22]. Other groups have attributed similar
temperature dependence in the resistivity of their nanoparticle samples using this
phenomenon [23]. The original calculations by Mott [24] were used to explain un-
usual temperature dependence in transport through semiconductors, and with few
modifications we can hope to explain our own unusual temperature dependence using
this phenomenon. |

The term hopping is used to describe phonon-assisted tunneling from one localized
state in a band-gap to another. Considering the schematic in Figure 5.7, we see in
the band gap a number of states which may be accessed by electrons in the valence
band. As an insulator, the SizN4 does not have states which will allow the electrons to
conduct freely through the sample. However, by “hopping” from one localized state
to another within the gap as shown in Figure 5.7, electrons may travel through the
thin Si3N4 barrier. The following derivation follows closely that in Reference [22].

Phonon-assisted transitions occur when electrons in the valence band absorb or
emit a phonon from the bulk. In order for transport through the insulator to be

possible, electrons from the valence band must absorb a phonon from the solid, and
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Figure 5.6: Ln R vs. 1/T for the data in Table 5.1. The equation of the best-fit line
is: In R = 9.52 + 686.6..

therefore, the conductivity depends strongly on the temperature. The probability of
having a phonon-absorbing hop of distance X and energy W at a temperature T is

given by

p ~ exp[-2aX — (W/kgT)] (5.3)

where exp[-2aX] is the probability that, for a wavefunction ¥(r) which decays as
exp[-ar], the electron will be found a distance X from the original site, and where
exp[-W/kpT] is the probability that the electron will absorb a phonon of energy W.
Note that Fermi-Dirac statistics require that we limit ourselves to transitions within

kgT of the Fermi energy, and that within this narrow band we assume the localization
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L

Figure 5.7: Energy schematic of variable range hopping. The solid and the dashed
arrows indicate two possible tunneling events. W and X are the energy difference and
spatial distance. respectively, involved in the tunneling event represented by the solid
line.

length o and the density of localized electron states n(Eg) to be constant.

We have, in Equation 5.3, a trade-off between hops in which the electrons tunnel
a long distance spatially or tunnel to a state with a much different energy. Which of
these two hopping mechanisms dominates depends on the temperature. The energy

difference W and the spatial distance X are related by

7 X*W(X)n(Er) =1 (5.4)

where n(EF) is the density of localized electron states per unity area per unit energy. If
we consider a circle of radius X around the electron, W(X) is defined to be that energy
for which the number of states with energy less than W(X) available in that circle is
unity. Note that we have explicitly considered the problem to be two dimensional by
considering a circle with radius X as opposed to a sphere of radius X. The variable
range hopping transport we are considering occurs through an incompletely etched
SizN4 membrane. Since the SizN4 membrane is only 50 nm before the RIE, any layer
of Si3N4 remaining after the RIE will be much thinner than 50 nm, most likely on
the order of a typical localization length o ~10 A. We therefore consider the variable
range hopping transport to occur in only two dimensions.

Solving for W(X) in Equation 5.4 and plugging this back into Equation 5.3, we
get that the probability has the following form
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p ~ exp[—aX — (b/X?)]. (5.5)

If we minimize the exponent so as to maximize the probability, we get that the most

probable hopping distance X is given by

X = [akTn(Ep)]™3 (5.6)

where « is the localization length introduced in Equation 5.3. If we assume that the
most probable hopping distance dominates, and that the probability for hopping, p,
is linearly related to the conductivity, o, we can simply plug in the X of Equation 5.6

to obtain the following conductivity-temperature relationship

o ~ exp(—A/T?) (5.7)

or, equivalently, the resistivity-temperature relationship
R ~ exp(A/T5) (5.8)

where A is given by

]CBTL(E p)
Taking the natural log of both sides of Equation 5.8 we get that

A~ (-—91—)3 . (5.9)

A
T3~ —— (5.10)

and taking the natural log a second time we get that the temperature T and resistance
R are related by

In(InR) ~ InA — %lnT. (5.11)

We see from Equation 5.11 that a plot of the data in Table 5.1 as In (In R) vs. In
T should result in a straight line with a slope of -1/3. In Figure 5.8 we have plotted
In (In R) vs. In T. Also included in Figure 5.8 is a best fit line with the following
equation: In (In R) = 4.77-0.42In T. The correlation coefficient |r| of the data to this
best fit line is 0.99, where a correlation of 1.0 is a perfect fit. We see that In (In
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R) and In T are, in fact, linearly related as predicted in the model of variable range
hopping. The slope of -0.420 &+ 0.002, however, is significantly different the predicted
value of -0.33. There are a number of reasons why, even if the correct mechanism for
transport is variable range hopping, the slope may deviate from the predicted value
of -0.33. These include, among many others, Coulomb interactions and the precise

form of the density of states. n(Eg).
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Figure 5.8: Plot of In(InR) vs. In T. The equation of the best-fit line is: In(InR) =
4.77-0.42InT.

Having eliminated simple conduction through metals, superconductors, and semi-
conductors as possible mechanisms to explain the unusual temperature dependence of
our samples, we conclude that variable range hopping is the most likely explanation

for the unusual temperature dependence in our variable range devices. From this
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we can tentatively conclude that our variable range devices are the result of having
etched incompletely through the Si3sN4 membrane.

In addition to high-resistance devices and variable resistance devices, many of the
samples we fabricated demonstrated rectified behavior indicative of a Schottky diode.
The linear conductance of one such device is shown in Figure 5.9. For comparison, a
typical Schottky diode I-V curve is included in Figure 5.10.

The physics of Schottky diodes, which occur at a metal-semiconductor interface,
may be found in a standard physics textbook and will not be covered here [25].
The important point to be discussed in comparing Figures 5.9 and 5.10 is that the
device in Figure 5.9 displays unmistakably rectified behavior. This may be explained
by concluding that in this device, we did not etch completely through the SizN,
membrane. Although Si3N4 is usually an insulator, impgrities in the Si3N4 may
cause the normally insulating membrane to behave as a semiconductor. The interface
between the (semiconducting) SigN, layer and the metal lead could feasibly result
in a Schottky diode, resulting in rectified behavior such as that demonstrated in
Figure 5.9. This lends further evidence that a) in these samples we did not etch
completely through the Si3zN; membrane and b) the SisN4 layer deposited on our
substrate is endowed with impurities which result in semiconducting behavior.

In sum, the aluminum nanoparticle experiment has demonstrated a number of
important points which we have used in conducting the Kondo experiment described

below.

1. Using our technique, we are able to fabricate nanoparticles in the correct size

range to investigate the Kondo effect in a confined system.

2. In order to fabricate reproducible oxide layers, it is necessary to oxidize the
samples in pure Oy. The current recipe is to oxidize in 50 mT of pure O, for 2

minutes.

3. By moving to a longer electron-beam exposure, and a longer reactive-ion etch,

we hope to eliminate the problem of predominantly high-resistance devices.

4. The Si3Ns membrane is doped with impurities and acts as a semiconductor

rather than an insulator.
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Figure 5.9: Linear conductance from an aluminum nanoparticle at 4 K.

Figure 5.10: Typical I-V curve of a Schottky diode.
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5.2 The Cu[Fe] Nanoparticle Kondo Experiment

5.2.1 The Cu[Fe] System

Although the copper-iron system we have chosen to investigate has many advantages,
such as a suitable Kondo temperature, it is considerably more complicated experi-
mentally than the aluminum-only system. First, it is not obvious how to fabricate
the second oxide junction. One approach would be to oxidize the copper nanopar-
ticle to form a copper oxide tunnel barrier. Another would be to deposit and then
immediately oxidize a thin layer of aluminum. Although both methods have been
investigated, the latter was chosen and is described in Chapter 4 (see Figure 4.4).
The major benefit to depositing and then oxidizing a thin aluminum layer is that
aluminum junctions are well characterized, both through our our work as presented
in Section 5.1 and in other papers [3] [4]. The disadvantage, however, lies in the
need to successively deposit two very thin films during fabrication. In order for our
samples to represent transport through a nanoparticle instead of a thin film, it is
necessary that the Cu-Fe film form islands on the SizN4 surface as shown in Fig-
ure 4.4. The next deposited layer is the thin aluminum film which, when oxidized,
forms the second tunnel barrier. In order for this aluminum layer to form a spatially
homogenous oxide, it is imperative that the aluminum thin film does not form islands
on the Si3N4 surface. In order to successfully fabricate our samples using this two
thin film technique, it is important that we understand the mechanisms behind thin
film growth on surfaces and the experimental parameters involved in control of these
mechanisms. The next section is dedicated to understanding the mechanisms of thin

film growth on surfaces.

5.2.2 Thin Film Growth

As mentioned in Chapter 4, there are three mechanisms for thin film growth: layer
growth, island growth, and layer followed by island growth. Only the first two will
be discussed here; for a more in depth treatment see References [19] and [20)].
Island (or Volmer - Weber) growth (illustrated in Figure 5.11) is a process involving
mobile adatoms diffusing along a substrate surface. These adatoms diffuse along the

surface until they either desorb or collide with other adatoms. These collisions result
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Figure 5.11: Island growth on a substrate.
I L SR

Figure 5.12: Layer growth on a substrate.

in small clusters which themselves diffuse along the surface until they collide with
other clusters, forming small islands on the surface. In most cases, only a few atoms
are needed to form a nucleus with the critical radius for stable island growth. Once
that critical radius has been achieved, island size varies roughly as the square root of
the deposition time [19]. As deposition continues, the island size and density become
so large that individual islands coalesce to form an unbroken layer on the substrate
surface.

Layer (or Frank and van der Merwe) growth (illustrated in Figure 5.12) involves
the planar accretion of diffusing adatoms on a substrate surface. Unlike in island
growth, the first layer is formed almost entirely before the second layer starts to
form.

The two most easily-controlled parameters that determine the dominant growth
mechanism are temperature and evaporation rate. As the temperature is increased,
the atoms evaporated on the surface have more energy to diffuse along the surface
and join up with other atoms, thereby forming clusters and subsequently islands. To
reduce surface energy, these islands will be approximately spherical in shape. If the
temperature of the surface is much lower, the atoms will not have enough energy
to diffuse far from where they land on the substrate surface. If the temperature is

much lower still, the atoms will simply stick on the surface where they land. When

4In order to reduce the energy associated with surface atoms, which have fewer neighbors than
would be most energetically stable. the island will prefer a geometry which maximizes volume while
minimizing surface area, i.e. a sphere.
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the atoms are not free to move about the surface, no islands can form and layer
growth occurs. The same principle applies when considering the effect of evaporation
rate on growth mechanism. When the evaporation is slow, the atoms have a lot of
time to diffuse and aggregate in clusters and islands. On the other hand, when the
evaporation rate is very high, the atoms have no time to move on the substrate surface
before the next monolayer of atoms arrives. In this case, layer growth is favored. By
controlling the temperature® and the evaporation rate of the two crucial thin films
involved in this stage of the fabrication process, we can hope to favor island growth

of the copper-iron layer and layer growth for the aluminum layer.

5.2.3 Experimental Data for the Cu[Fe] System

We have yet to fabricate any samples with the copper-iron system that display the
Coulomb staircase behavior shown in Figure 5.1. All of the devices so far fabricated
display the same high-resistance behavior seen in many of the aluminum-only samples.
One example of such a sample is shown in Figure 5.13. This sample has a resistance
of 850 M.

Unfortunately, there exist even more possible explanations for the high-resistance
behavior in the copper-iron samples than with the aluminum samples. In addition to
those mentioned in Section 3.1, there are several possibilities related to the deposition
of the two thin films mentioned in Section 5.2.1.

One possible explanation for the unsuccessful Cu-Fe devices is that the aluminum
film deposited for the second junction is too thin. If the aluminum film is too thin, or
if the temperature during evaporation is too high, the aluminum will “bead up” on
the surface to form islands via the island growth mechanism discussed in Section 5.2.2.
This would lead to extremely irregular aluminum coverage on the nanoparticle. If an
aluminum island forms on top of a Cu-Fe nanoparticle, then oxidation of the sample
might create an aluminum junction which is too thick. If, on the other hand, no
aluminum remains on the nanoparticle, oxidation of the exposed Cu-Fe nanoparticle

may leave insufficient unoxidized metal to form a nanoparticle. For these reasons, it is

5There are a number of ways in which the temperature at the sample may be controlled. The
easiest method is the use (or absence of) cooling water or liquid N5 to cool down the sample during
evaporation. At this time, it is not clear exactly what range of temperatures may be achieved by
this method.
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Figure 5.13: Linear conductance for a copper-iron nanoparticle at 4 K.

crucial to the success of our samples that the aluminum layer deposit as a homogenous
thin film. In order to promote layer growth over island growth for the aluminum layer,
we recently switched from using water to liquid Ny to cool the sample stage during
the aluminum evaporation.

Another explanation for the unsuccessful Cu-Fe samples is that our deposited
aluminum layer is not too thin but too thick. An aluminum layer which is too thick
will not oxidize completely. In this case, a thin layer of aluminum would connect
all of the nanoparticles on the SigN4 membrane. In this scenario, transport through
the device would be characterized by transport, not through a single nanoparticle,
but through an array of nanoparticles. Although this would not necessarily lead to a

high-resistance device, it may explain the absence of Coulomb Blockade in many of
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the samples.

In sum, we have found the fabrication of Cu-Fe nanoparticles to be a challenging
experimental problem. There are a number of different changes we intent to make in
our fabrication technique to eliminate the problems discussed in this chapter. Primar-
ily, we believe that switching from a water cooled system to a liquid N; cooled system
during the evaporation of the thin aluminum film will eliminate problems involving
island growth of the aluminum film. We also hope to eliminate the problem of in-
completely etched Si;N4 membranes discussed in Section 5.1 by using better focusing
techniques and a resist that will allow us to use a longer reative-ion etch. At the time

of this thesis, both of these ideas are being pursued.




Chapter 6

Conclusion

This experiment represents an ideal opportunity to investigate one of the most inter-
esting systems in nanoscale physics today: the “Kondo Box”. There are, however, a
number of problems which need to be addressed before this experiment can reach its
full potential.

The largest problem with this experiment has been the difficulty in imaging the
nanoparticle at any of the fabrication stages. At the present time, the only method we
use to gather information about the nanoparticles is to complete all of the fabrication
steps described in Chapter 4 and to measure the sample’s electrical properties. This
is not an ideal situation; by measuring only the “end product”, we cannot easily
distinguish which of the many steps is causing problems with the devices. Ideally,
we would be able to image our samples at different stages of the process. Although,
for reasons related to our sample geometry, we are not able to use tunneling electron
microscopy to image our completed devices, there are several possible methods we
might use to gather information about our fabrication process. One is to use atomic-
force microscopy to image our Si3N4 membranes after the reactive-ion etch. If we are
able to image the 4 nm opening in the membrane, we would have a straightforward
method for determining whether or not the etch was complete. Another possibility
is to use scanning tunneling microscopy to image the islands that form on the SizN4
membrane after the Cu[Fe] deposition. By taking advantage of these techniques, we
hope to gain more direct and more rapid feedback about our fabrication process.

One, more difficult, problem with this experiment is the inability to fabricate mdre
than one sample at a time. Even if the rest of the fabrication were perfect, the forma-

tion of islands on the nitride window is a statistical process. It is necessary therefore
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that many samples be processed in parallel so that statistical failure be separated
out from a problem in the fabrication process. To quote from Nobel Laureate Ivar
Giaever [26]

... In performing tunneling experiments the sample is the critical link.
Therefore it is very important to arrange the experiments such that one
can easily test many samples. Recently I tested over 50 samples in one
day - and I might add that they were all bad.

There are two stages at which it is not possible, with the present system, to process
many samples in parallel. The first roadblock to parallel processing is the electron-
beam lithography. The system being used for this experiment cannot pattern images
large enough to expose several nitride windows at one time. This requires that each
nitride window be processed individually, which significantly increases the time it
takes to “debug” the fabrication process. Unfortunately, there are only a few systems
capable of writing on a very large area of wafer, and this particular problem is not
readily solved. The second roadblock to parallel processing is the evaporation. To
avoid contamination of the oxide layer, it is necessary that the entire evaporation
process be done without venting the evaporation chamber to atmosphere. In order to
evaporate both sides of the sample, we have machined a special stage that attaches
to the end of the evaporator manipulator which allows us to evaporate on both sides
of a sample with our geometry. As presently designed, this addition allows for us to
evaporate on two samples at a time. It may be possible to design a system which
would allow us to evaporate on more samples simultaneously although the geometry
of the chamber would have to be carefully considered. Nevertheless, until it is possible
to do the electron-beam lithography on an array of samples in parallel, there is no
major advantage in doing so.

This system is also an excellent opportunity to investigate interimpurity. interac-
tions. In most dilute alloy studies, the interimpurity effects as discarded as negligable
for an appropriately dilute alloy. It would be interesting to study how two magnetic
impurities interact in a Kondo system. By controllably increasingly the concentration
of iron in the copper-iron alloy, we can hope to study exactly how these interimpuriy

interactions affect transport through the system. The concentration at which these
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effects become measurable would also be another measure of the size of the Kondo
“cloud” [16].

In conclusion. we have fabricated 2-3 nm aluminum nanoparticles using the system
developed by Dan Ralph et. al. [3]. We have written a computer simulation to model
the single electron transport through the system and we have used this simulation to
understand the parameters involved in the experiment and to help in the analysis of
the data. We have developed a technique for extending this fabrication method to
other metal systems and hope to use this system to investigate the Kondo effect in
an iron-doped copper nanoparticle, and in doing so, verify the results of Thimm et.

al. [2] concerning electron transport through a “Kondo box”.




Appendix A

CALCULATION OF INTEGRAL BETWEEN EQUATIONS 2.13 AND 2.14

The integral to be calculated to get from Equation 2.13 to Equation 2.14 is

[ @0 - fle+a)lde (A1)

where f(g) is the Fermi-Dirac distribution function given by

1

&)= mr 7 (A-2)

T is the temperature. and kg is the Boltzmann constant. Define § = 1/kT and
z = eV. The following relationship

fEL - fle+z)] = f(a)l_e(—ed:-z) (A.3)

may be derived with some manipulation and can be used to rewrite the integral in

Equation A.1 as

1 00
= /_Oo[f(f) — fle +1)]de. (A.4)
Define a new function g(z) to be the integrand of Equation A.4.

Since

WO L[ [56) - fle+ e (A5)
= —/ —fs-i—:v (A6)
oo ﬂﬂ(ff'*'f’?)
= - mdg (A7)
= 1, (A.8)
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g(z) must equal x. Note that the initial condition g(0) = 0 requires the constant of

integration to be zero. Equation A.4 is therefore given by

T
— (A.9)

from which, substituting back in the original variables, we derive that

Ty = ffﬁ’fms) 2 pi(&)pale + V) /_: fEN-fle+eV)]  (A10)
eV ]

= TITE P oeale +eV) [y (A1)



Appendix B

DERIVATION OF EIGENVALUES FOR THE ZERO-BAND WIDTH MODEL

The diagonal elements can be derived straightforwardly as follows [27]:

The two diagonal elements to be calculated can be written

<®OIHV|¢8.’L'C> (B].)

and

<®e:cc|HVI(I)O>- (BQ)

I will only go through the derivation for the latter element. The other element is
derived in the same way. We first need to consider what results when Hy is applied
to |®o) where

Hy = Vaxchsoes + Vi scar + Vaxel oy + Viiek ey (B.3)

(the first term transfers a spin 1 e~ from the metal to the atom, the second term
transfers a spin 1 e~ from the atom to the metal, the third term transfers a spin | e~
from the metal to the atom, and the fourth term transfers a | e~ from the atom to

the metal) and |®) is the spin singlet state
Vi —ot o
|o) = %(Cd,TCk,J, - Cd,¢¢k,¢)|0>- (B.4)
Putting Equations B.3 and B.4 together, we get
Hy|®) = V(c} 10kt ok Gt + CEACM +cf 4Cd,4) 7((% Tck,L cd,,LClT(,T)IO)' (B.5)
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Most of the factors drop out. Each term in Hy only acts on terms in |®q) with the
proper spin. For example, the term CL,TCMCL, \LCL,T disappears immediately because the
annihilation operator ¢4+ cannot operate on the state c};, ic;‘m because the d-orbital has
only electrons of spin |. On the other hand, the term CL,TCd,TCL,TCL, 110) = c{mc}; 110).
Each term that would put two electrons on the d-orbital (such as cL’Tck,Tcz’Tc;f( ) have
also been dropped because we are taking the U — oo limit.

After some manipulation, we get

vV
Hy|®) = —2(CL,TCL¢ - CI(,¢CI<,T)|O)- (B.6)

This equation is greatly simplified when we recognize that

|@ezc) = cltc,Tcch,i (B.7)

and use the anticommutation relationship satisfied by the creation operators

[CLTCI(,i ’ CI«,¢¢L,¢]+ = 0. (B.8)

Using relationship B.8 to switch the sign in Equation B.6 and plugging in the
definition of the excited state B.7 yields
Hy|®0) = V2V|Deye). (B.9)

Finally, it can be seen that

(B ee| Hy|®o) = V2V. (B.10)

Now that we understand where the matrix elements in Equation 2.37 come from,

we can proceed to find the eigenvalues [28]. We start with the matrix 2.37

+ VVv2
catac VV2 (B.11)
V\/i 261.(
subtract the eigenvalues from the diagonals and set the determinant to 0
-x Vv2
€t o V2, (B.12)
V\/ﬁ 2Ek - A
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(64 + ex — \) (26 — A) — 2V2 = 0. (B.13)

This yields a quadratic equation in A

A2 — (3ex + €)X + 26 (ea + ex) — 2V = 0. (B.14)

Solving this quadratic equation yields the two eigenvalues we wish to calculate:

2V?

/\1 = 25!( + —A‘; (B15)
22
/\2 = €k T €4 — —E (316)

where Ae = € — €.




Appendix C

COMPUTER SIMULATION CODE

This computer simulation calculates (with no approximations) the linear conductance
I(V) for the nanoparticle devices explored in this thesis. The nanoparticle parameters
discussed in Chapter 3, C;, Cq, Ry, Rs, and T, are modified in the program body.
When the program is run, the user will be asked to input the voltage range (in mV)

and the step size (in mV) for the simulation.

#include <stdio.h>

#include <float.h>

#include <math.h>

#define elec 1.6e-19 /*electron charge*/

#define k_B 1.38e-23 /*Boltzmann constant*/

#define epsilon_0 8.85e-12 /*permittivity of free space*/
#define pi 3.14159

void InitializeArrays(double array(]);

void CalculateE_plus_1(double E_plus_1[], float C_2, float C_tot,
float V, float E_C, float Q_0, int n, int sign);

void CalculateE_minus_1(double E_minus_1[], float C_2, float C_tot,
float V, float E_C, float Q_O0, int n, int sign);

void CalculateE_plus_2(double E_plus_2[], float C_1, float C_tot,
float V, float E_C, float Q_O, int n, int sign);

void CalculateE_minus_2(double E_minus_2[], float C_1, float C_tot,
float V, float E_C, float Q_0, int n, int sign);

void CalculateTunnelOn_1(double tunnel_on_1[], double E_plus_1[],
float R_1, float T, int n);

void CalculateTunnelOff_1(double tunnel_off_1[],.double E_minus_1[1,
float R_1, float T, int n);

void CalculateTunnelOn_2(double tunnel_on_2[], double E_plus_1[],

7
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float R_2, float T, int n);
void CalculateTunnelOff_2(double tunnel_off_2[], double E_minus_1([],
float R_2, float T, int n);

void CalculateSigma(double A[], double sigma[l, int n, double factor[l);

main()

{

/* C_1 and C_2 are the capacitances of the two tunnel junctions;

R_1 and R_2 are the resistances of the two tunnel junctions;

Q_0 is the offset charge on the particle, radius is the radius of the particle,
T is the temperature that the simulation is being run at,

V_min and V_max are the limits for the simulation and V_step is the step size;
I is the current obtained for each voltage */

float C_1, C_2, R_1, R_2, Q_0, radius, T, E_C, C_tot, C_self, V_min, V_max,
V_step, V_min2, V_max2, V_step2, sigma_n_max;
double I, sigmasum;

double E_plus_1[50]; /*define arrays to hold all values used to calculate I */
double E_minus_1[50]; /*array must be larger than largest n in calculation */
double E_plus_2[50];

double E_minus_2[50];

double tunnel_on_1[50];
double tunnel_off_1[50];
double tunnel_on_2[50];
double tunnel_off_2[50];

double A[50];
double sigma[50];
double factor[50];

float k; /*main loop variablex/
double sum;

double CurrentSum;

double double_n;

int n, z, h, 1;

int sign;

double temp, temp2;

FILE *smltn; /*pointer to simulation filex/

printf("\nV_min (in mV) = ");
scanf ("/f", &V_min2);
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printf("\nV_max (in mV) = ");
scanf ("/f", &V_max2);
printf("\nV_step (in mV) = ");
scanf ("4f", &V_step2);

V_min = V_min2/1000; /* converts inmput in mV to V */
V_max = V_max2/1000;
V_step = V_step2/1000;

/* input for the simulation below+/

C_1 = 1e-18; /* capacitance of lead 1 */
C_2 = 3e-18; /* capacitance of lead 2 */
R_1 = 10e6; /* resistance of lead 1 */
R_2 = 100e6; /* resistance of lead 2 */
Q_0 = 0.0%elec; /* offset charge on the nanoparticle */

radius = 2.4e-9; /* radius of the nanoparticle - DOES NOT GET USED IN SIMULATION x*,
T =4.2; /* temperature */

C.self = (elec*elec)/(8+pixepsilon_0*radius); /*self-capacitance of the particlex/
C_tot = C_1+C_2; /*sum of the two tunnel capacitances*/

E_C = (elec*elec)/(2*C_tot); /*electrostatic charging energy*/

[%  EkkEkkkkkRkRkRmAin LOOPRRRkRKKRRRRAKKKRRKKKKKFRR K /

smltn = fopen("I.dat","w");
for (k=V_min; k < V_max; k = k + V_step)
{
if (k<=0)
{
double_n = (1/elec)*((C_2%k) + Q_0 - (elec/2));
/* calculates the number of extra electrons on the nanoparticle */

temp = double_n; /* gets only the integer part of n*/
n = temp-1;
printf("\n n = %d", n);

sign = -1;

else

{
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double_n = (1/elec)*((C_2*k) - Q_0 + (elec/2));
/* calculates the number of extra electrons on the nanoparticle */

temp = double_n; /* gets only the integer part of nx/
n = temp+l;
printf("\n n = %d", n);

sign = +1;
b

sigma_n_max = 0.0;
sum = 0.0;

InitializeArrays(E_plus_1);
InitializeArrays(E_minus_1);
InitializeArrays(E_plus_2);
InitializeArrays(E_minus_2);

InitializeArrays(tunnel_on_1); /*initializes all arrays back to zero*/
InitializeArrays(tunnel_off_1);
InitializeArrays(tunnel_on_2);
InitializeArrays(tunnel_off_2);

InitializeArrays(A);
InitializeArrays(sigma);

CalculateE_plus_1(E_plus_1, C_2, C_tot, k, E_.C, Q_0, n, sign);
CalculateE_minus_1(E_minus_1, C_2, C_tot, k, E_C, Q_0, n, sign);
CalculateE_plus_2(E_plus_2, C_1, C_tot, k, E_C, Q_0, n, sign);
CalculateE_minus_2(E_minus_2, C_1, C_tot, k, E_C, Q_0, n, sign);

CalculateTunnelOn_1(tunnel_on_1, E_plus_1, R_1, T, n);
CalculateTunnelQff_1(tunnel_off_1, E_minus_1, R_1, T, n);
CalculateTunnelOn_2(tunnel_on_2, E_plus_2, R_2, T, n);
CalculateTunnelQff_2(tunnel_off_2, E_minus_2, R_2, T, n);

A[0] = 1;

if (k<=0)
{

for (z = 1; z < (abs(n)+1); z++) /* ratio of tunneling rates */

{ L
factor[z] = (tunnel_off_1[z-1]+tunnel_off_2[z-1])/(tunnel_on_1[z]+tunnel_on_2[z])

}
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}

if (k>0)

{

for (z = 1; z < (n+1); z++) /* ratio of tunneling rates */

{

factor[z] = (tunnel_on_1[z-1]+tunnel_on_2[z-1])/(tunnel_off_2[z]+tunnel_off_1i[z]’
}

}

for (z=1; z < (abs(n)+1) ; z++)
{ /* calculates the fraction A that relates sigma[n] and sigma[n-1] */

A[z] = A[z-1]#*factor(z];

}
for (z=0; z < (abs(n)+1) ; z++)
{
sum = sum + A[z]; /* sums all the fractions for normalization */
}

sigma[0] = 1/sum;

CalculateSigma(A, sigma, n, factor);
/* with sigma[0] calculates all probabilities sigmax/

sigmasum = 0.0;

for (1 = 0; 1<(abs(n)+1); 1++)
{
sigmasum = sigmasum + sigmaf[1l];

}

CurrentSum = 0.0;

for (1 = 0; 1<(abs(n)+1); 1++)
/* sums all occupation probabilities multiplied by tunneling rates */

{
CurrentSum = CurrentSum + sigma[l]*(tunnel_off_2[1]-tunnel_on_2[1]);

}
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I = elec*CurrentSum; /* calculates I */

fprintf (smltn,"%f J%E\n", k, I);
}
fclose(smltn);

by

/* skkkrkkkkkend of main loopkkkkkkkkkkkkkkkk */
/*  kxxkkkkkkxkxkInitialize Arrayskikkkkkkkkiokdkokk x/

void InitializeArrays(double array{])

{

int i;

for (i = 0; 1 < 60; i++) /# initializes all arrays to 0.0 */
array[i] = 0.0;

}

/* xxkxxkxend of InitializeArrays*kk*kkikkkkk */
/% xxkkxkkk CalculateE_plus_1 s#kkkxskkkkkkks %/

void CalculateE_plus_1(double E_plus_1i[], float C_2, float C_tot,
float V, float E_C, float Q_0, int n, int sign)

{
int j;
for (j = 0; j < (abs(m)+1); j++) /* energy to add electron through lead 1 */
{
E_plus_1[j] = -elec*(C_2/C_tot)*V + E_C*((2*sign*j)+1+2*(Q_0/elec));
}
}

/% exxkkxxxx end of CalculateE_plus_1 skkkkkkikk %/
/%  ekkkkskokk CalculateE_minus_1 skkskkskskkkkkkkk k/

void CalculateE_minus_1(double E_minus_1[], float C_2, float C_tot,
float V, float E_C, float Q_0, int n, int sign)
{

int j;

for (j = 0; j < (abs(n)+1); j++) /* energy to subtract electron through lead 1 */

{
E_minus_1[j] = elecx(C_2/C_tot)*V + E_C*((-2*sign*j)+1-2x(Q_0/elec));
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}

/% xxxkrkxxkx end of CalculateE_minus_1 skkkkkkkx */
/% ki CalculateE_plus_2 kkkkkkkskkkkikk */

void CalculateE_plus_2(double E_plus_2[], float C_1, float C_tot,
float V, float E_C, float Q_0, int n, int sign)
{

int j;

for (j = 0; j < (abs(n)+1); j++) /* energy to add electron through lead 2 */

{
E_plus_2[j] = elec*x(C_1/C_tot)*V + E_Cx((+2*sign*j)+1+2*(Q_0/elec));

3

/% Fxxxxxskkx end of CalculateE_plus_2 #¥kkkxkx* */
/% xxxxkkkk CalculateE_minus_2 *kskkkkkokkkxkkk */

void CalculateE_minus_2(double E_minus_2[], float C_1, float C_tot,
float V, float E_C, float Q_0, int n, int sign)
{

int j;

for (j = 0; j < (abs(m)+1) ; j++) /* energy to subtract electron through lead 2 */

{
E_minus_2[j] = -elec*(C_1/C_tot)*V + E_Cx((-2*sign*j)+1-2%(Q_0/elec));

}

/% xxxxxxxxxx end of CalculateE_minus_2 sxkkxkkkkkx x/
/* *kkkkkkkkkCalculateTunnelOn_1 *kkkkkkkkkkkkkx */

void CalculateTunnelOn_1(double tunnel_on_1[], double E_plus_1if],
float R_1, float T, int n)
{
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int j;
for (j = 0; j < (abs(n)+1); j++) /* tunneling rate on through lead 1 */
{

tunnel_on_1[j] = (1/(elec*elec*R_1))*(-E_plus_1[j]l/(1-exp(E_plus_1[j1/(k_B*T))));
}

X

/*  sxxxxxxend of CalculateTunnelOn_lxkskkx&s* */
/* *kxxkkkkkkCalculateTunnel0ff_1 sxxkkxkkkkkrks x/

void CalculateTunnelOff_1(double tunnel_off_1[], double E_minus_1[],
float R_1, float T, int n)
{

int j;

for (j = 0; j < (abs(n)+1) ; j++) /* tunneling rate off through lead 1 */

{
tunnel_off_1[j] = (1/(elec*elec*R_1))*(-E_minus_1[j1/(1-exp(E_minus_1[3j]1/(k_B*T))));

}
3

/¥  Fxkxkxxend of CalculateTunnelOff_lxkkksxsxx *x/
/% ookokkkkkxCalculateTunnelOn_2 #kkkxkkkkkikkkk®x %/

void CalculateTunnelOn_2(double tunnel_on_2[], double E_plus_2[],
float R_2, float T, int n)

{

int j;

for (j = 0; j < (abs(n)+1); j++) /* tunneling rate on through lead 2 */
{

tunnel_on_2[j] = (1/(elec*elec*R_2))*(-E_plus_2[j]/(1-exp(E_plus_2[j]1/(k_B*T))));
}

}

/¥ xxxxkxxend of CalculateTunnelQOn_2kx*xxxxxx */
/¥ xxkekxxskkCalculateTunnelOff_2 skkxkkkexrrses x/

void CalculateTunnelOff_2(double tumnel_off_2[], double E_minus_2[],
float R_2, float T, int n) '
{
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int j;

for (j = 0; j < (abs(m)+1) ; j++) /* tunneling rate off through lead 2 */

{
tunnel_off_2[j] = (1/(elecxelec*R_2))*(-E_minus_2[j]/(1-exp(E_minus_2[j1/(k_B+*T))));

}
}
/*  sxkxkkxend of CalculateTunnelOff_2#kkskskkx */

/* skkiokkrokrk  CalculateSigma skkkkkkkkddkkkx */

void CalculateSigma(double A[], double sigma[], int n, double factor[])
{

int h;
for (h = 1; h < (abs(n)+1) ; h++)
{
sigma[h] = sigma[h-1]*factor[h]; /* calculates probability of occupation sigma */
}

}

/¥ xkxkpkkkiokkxkkx end of CalculateSigma *kkkkkkkkkkkkkkkkkk */



Appendix D
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FABRICATION RECIPES

FABRICATION OF SigNy MEMBRANE WINDOWS

. Take a Si wafer with 50 nm LPCVD SizN4 on both sides and deposit 50 nm

layer of SizN4 on the “window” side of the wafer. This layer will protect the
Si3N4 membrane during photolithography and will be etched completely away
in the KOH.

Spin AZ 3318 photoresist at 4000 rpm for 30 s.

Bake for 1 min at 90° C.

Expose for 2 min.

Bake for 1 min at 110° C.

Develop with MF300 developer (full strength) for 2 min.

13 min RIE etch (O, at 0.50 SCCM, CHF; at 36.0 SCCM, pressure 40 mT) to
remove the native oxide layer on the silicon wafer.

Etch wafer in a 30% (by weight) solution of KOH at 80-85°. To ensure a
constant, homogenous KOH solution, cover beaker to reduce evaporation and
periodically remove wafer and stir solution. The etch is very sensitive to KOH
concentration and hotplate temperature and can take anywhere from 2-5 hours
to complete.

FABRICATION OF SisNy MEMBRANE WINDOWS

. On the “window” side of the silicon wafer, spin PMMA/MMA 10% by weight

electron-beam lithography resist at 3000 rpm for 45 sec.

. Bake for 2 hrs at 180° C.

On the same side, spin 1.5% 950K PMMA el'ect'ron-beam lithography resist at
7000 rpm for 30 sec.
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Bake for 2 hrs at 180° C.

Carefully break apart the grid of windows into individual units. Care should be
taken not to touch the Si3N4 windows themselves as they can easily break.

Using electron-beam lithography on each unit separately, expose the SisN4 win-
dow to a single pixel dot pattern.

Develop with MIBK/IPA for 1 min.

Stop development by dunking in IPA for 15 s.
Carefully dry window with Nj.

12 min RIE (same parameters as above) etch.

Insert sample into evaporator for thermal evaporation. The sample must not
be exposed to atmosphere between any of the evaporations. It is therefore
necessary that the sample holder be designed to allow for evaporation on both
sides of the sample.

Deposit ~ 1000 A of pure Al onto the “bowl” side of the wafer, i.e. the first
layer of Al must fill the bowl etched in the window during the 12 min RIE etch
in Step 10.

Oxidize sample using 50 mT of O, for 2 min.

Flip sample in chamber and evaporate ~ 20 A of the 0.01% Fe in Cu alloy.
Deposit ~ 15 A of Al

Oxidize sample using 50 mT of O, for 2 min.

Deposit a final layer of ~ 1000 A of Al.
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